
LVFS Host Security ID (HSI) and
Silicon-Based Core Security

Linux Secure Launch - TrenchBoot Summit 2021

Piotr Król

1 / 24

13yrs in business
7yrs in Open Source Firmware and
Trusted Computing integration
C-level positions in

OSF and OSHW promoter
interested in Trusted Computing
Conference speaker and organizer
TrenchBoot Steering Committee
Core Member

Piotr Król
3mdeb Founder

whoami

2 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

coreboot licensed service providers since 2016 and leadership participants
UEFI Adopters since 2018
Yocto Participants and Embedded Linux experts since 2019
Official consultants for Linux Foundation fwupd/LVFS project
IBM OpenPOWER Foundation members

About us

3 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Michał Kopeć, Firmware Engineer @ 3mdeb, as main contributor this
presentation

Kudos

4 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Introduction
fwupd
HSI
Example HSI ID
HSI plugin analysis
Adding a new test to HSI
Code structure
Platform specific features
D-RTM
Q&A

Agenda

5 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

There is no easy way to determine level of platform security
What we can do today

obtain access to NDA documentation
obtain access to source code or skill to perform RE tasks
get deep technical knowledge of hardware, firmware, bootloader,
hypervisor, OS and system software
explore infinite space of new frameworks

CHIPSEC was one of the first and most successful frameworks to detect
most common platform security issues

of course not without own issues: UEFI Secure Boot had to be
disabled, some tests required unsigned Linux kernel modules
Intel-centric
not all modules are OSS

Now we are in era of fwupd/LVFS

Problem statement

6 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Linux Foundation project maintained by Richard Hughes
Written in C with LGPL v2.1 license
Initial release: 2015
fwupd is a firmware update application
LVFS is a update providing web service
It grew over the years as biggest database of firmware updates
Through LF project was able to establish relation with major IBV, OEMs and
ODMs
Already capable of enforcing some policies regarding firmware update
quality as well as grading firmware based on detected features

fwupd/LVFS

7 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

since fwupd already possess vast information about firmware security
features

Intel Boot Guard enablement status
SPI flash protection
TPM 2.0 presence

In version v1.5.0 fwupd introduced HSI (Host Security ID), which gives
ability to easily determine platform security.
https://blogs.gnome.org/hughsie/2020/10/26/new-fwupd-1-5-0-release/

fwupd/LVFS HSI

8 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

https://blogs.gnome.org/hughsie/2020/10/26/new-fwupd-1-5-0-release/

HSI was turned into official specification authored by:
Richard Hughes
Mario Limonciello
Alex Bazhaniuk
Alex Matrosov

With essential goal of providing easy-to-understand information to people
buying hardware
https://github.com/fwupd/fwupd/blob/main/docs/hsi.md

HSI Specification

9 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

https://github.com/fwupd/fwupd/blob/main/docs/hsi.md

HSI:0 - Insecure: None or few firmware protections
The lowest security level with little or no detected firmware
protections. This is the default security level if no tests can be run
or some tests in the next security level have failed.

HSI:1 - Critical: Most basic protections, may or may not be sufficient to
protect against remote attacks

This security level corresponds to the most basic of security
protections considered essential by security professionals. Any
failures at this level would have critical security impact and could
likely be used to compromise the system firmware without physical
access.

HSI:2 - Risky: Protects against more difficult attacks
This security level corresponds to firmware security issues that
pose a theoretical concern or where any exploit would be difficult
or impractical to use. At this level various technologies may be
employed to protect the boot process from modification by an
attacker with local access to the machine.

HSI levels

10 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

HSI:3 - Protected: Few issues, high security
This security level corresponds to out-of-band protection of the
system firmware perhaps including recovery.

HSI:4 - Secure: No issues, several layers of protection for firmware
The system is corresponding several kind of encryption and
execution protection for the system firmware.

HSI:5 - Secure Proven: Out-of-band attestation of firmware, no tests
implemented at this moment.

This security level corresponds to out-of-band attestation of the
system firmware. There are currently no tests implemented for
HSI:5 and so this security level cannot yet be obtained.

HSI levels

11 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

LVFS does not have to contain firmware update to be able to obtain HSI ID
The HSI can be determined using fwupdmgr:

mkopec@mkopec ~ > ssh nv41mz2-ax201

user@192.168.4.74's password:

Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-38-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

58 updates can be applied immediately.

To see these additional updates run: apt list --upgradable

Your Hardware Enablement Stack (HWE) is supported until April 2025.

Last login: Tue Nov 16 09:04:32 2021 from 192.168.4.154

user@user-NV4XMB-ME-MZ : ~ $ sudo fwupdmgr sec

Example HSI ID

12 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

https://asciinema.org/a/6925gtnsspoEEoOWElHHvKpzd?ssize=big
https://asciinema.org/a/6925gtnsspoEEoOWElHHvKpzd?ssize=big

Let's take a look at an example plugin that provides HSI security attributes
platform-integrity is one example of such plugin

it checks if the SPI flash access from the OS is disabled, using a
(proposed) sysfs entry /sys/class/platform-integrity

Plugin integrates fu_plugin_add_security_attrs interface, which detects
and registers security attributes

void
fu_plugin_init_vfuncs(FuPluginVfuncs *vfuncs)
{
 vfuncs->build_hash = FU_BUILD_HASH;
 vfuncs->init = fu_plugin_platform_integrity_init;
 vfuncs->destroy = fu_plugin_platform_integrity_destroy;
 vfuncs->backend_device_added = fu_plugin_platform_integrity_backend_device_added;
 vfuncs->add_security_attrs = fu_plugin_platform_integrity_add_security_attrs;
}

HSI plugin analysis

13 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

fu_plugin_add_security_attrs tests for:

BIOS Write Enable
BIOS Lock Enable
SMM BIOS Write Protect

static void
fu_plugin_platform_integrity_add_security_attrs(FuPlugin *plugin, FuSecurityAttrs *attrs)
{
 FuPluginData *priv = fu_plugin_get_data(plugin);

 /* only when the kernel module is available */
 if (priv->sysfs_path == NULL)
 return;

 /* look for the three files in sysfs */
 fu_plugin_add_security_attr_bioswe(plugin, attrs);
 fu_plugin_add_security_attr_ble(plugin, attrs);
 fu_plugin_add_security_attr_smm_bwp(plugin, attrs);
}

HSI plugin analysis

14 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

PR to https://github.com/fwupd/fwupd
Add a new criteria ID in libfwupd/fwupd-security-attr-private.h
Add a new entry in docs/hsi.md

Specify HSI level and impact
Implement or extend fu_plugin_add_security_attrs function in an existing
or new plugin

Adding a new test to HSI

15 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

https://github.com/fwupd/fwupd

Example: Plugin that checks CPU vulnerability mitigations via sysfs
We want to check if the the Meltdown vulnerability mitigations are enabled
Start by creating a new plugin - in this case based on the platform-
integrity plugin
Add a new criteria ID in libfwupd/fwupd-security-attr-private.h

/**
 * FWUPD_SECURITY_ATTR_ID_MELTDOWN:
 *
 * Host Security ID attribute for the Meltdown vulnerability
 *
 * Since: 1.8.0
 **/
#define FWUPD_SECURITY_ATTR_ID_MELTDOWN "org.fwupd.hsi.vulns.Meltdown"

Also add a name for the test in src/fu-security-attr.c

 fu_security_attr_get_name(FwupdSecurityAttr *attr)
 [...]
 if (g_strcmp0(appstream_id, FWUPD_SECURITY_ATTR_ID_MELTDOWN) == 0) {
 return g_strdup(_("Meltdown mitigations"));
 }

Adding a new test to HSI

16 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Implement fu_plugin_add_security_attrs - read the sysfs entry

void
fu_plugin_add_security_attrs(FuPlugin *plugin, FuSecurityAttrs *attrs)
{
 [...]
 /* create attr*/
 attr = fwupd_security_attr_new(FWUPD_SECURITY_ATTR_ID_MELTDOWN);
 fwupd_security_attr_set_plugin(attr, fu_plugin_get_name(plugin));
 fwupd_security_attr_set_level(attr, FWUPD_SECURITY_ATTR_LEVEL_CRITICAL);
 fu_security_attrs_append(attrs, attr);
 /* load file */
 if (!g_file_get_contents(fn, &buf, &bufsz, &error_local)) {
 g_warning("could not open %s: %s", fn, error_local->message);
 fwupd_security_attr_set_result(attr, FWUPD_SECURITY_ATTR_RESULT_NOT_VALID);
 return;
 }
 /* failure */
 if (g_strstr_len(buf, bufsz, "Vulnerable") != NULL) {
 fwupd_security_attr_set_result(attr, FWUPD_SECURITY_ATTR_RESULT_NOT_ENABLED);
 return;
 }
 /* success */
 fwupd_security_attr_add_flag(attr, FWUPD_SECURITY_ATTR_FLAG_SUCCESS);
 fwupd_security_attr_set_result(attr, FWUPD_SECURITY_ATTR_RESULT_ENABLED);
}

Adding a new test to HSI

17 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

The test now appears in the output of fwupdtool --security:

Host Security ID: HSI:0! (v1.7.0)

HSI-1
✔ Meltdown mitigations: Enabled
✔ UEFI platform key: Valid
✘ SPI BIOS region: Unlocked
✘ SPI lock: Disabled
✘ SPI write: Enabled
✘ TPM v2.0: Not found
[...]

Remember to document the changes - add a description to docs/hsi.md

See complete code at: https://github.com/3mdeb/fwupd/compare/3162c85...hsi_plugin_demo

Adding a test to HSI

18 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

https://github.com/3mdeb/fwupd/compare/3162c85...hsi_plugin_demo

Intel

BootGuard detection - read from HFSTS registers
Flash protection features - read from PCI config space
Intel TME - read from CPUID
Intel ME - read from the MEI interface, FW version, Flash Descriptor
Override status, Manufacturing mode disable

AMD

AMD TSME - Read from MSR

Other architectures

Current specification is highly focused on x86 UEFI
ARM, RISC-V specific features are planned

How features are tested

19 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Qubes OS: HSI detection via qubes-fwupd does not currently work
The wrapper script doesn't understand the security option at the
moment

coreboot: no protections commonly used with coreboot are detected
vboot, chip-based flash protection: these can provide high levels of
security if implemented correctly
heads

What about support for...

20 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

D-RTM belongs to higher HSI levels
D-RTM has a number of hardware and firmware requirements:

Vendor-specific method of establishing trusted state (SKINIT /
GETSEC[SENTER] etc)
DMA protection - IOMMU correctly configured
SMM protection
TPM 1.2 / 2.0
TPM event log

D-RTM

21 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

We can extend the HSI specification to include D-RTM capabilities by
adding the following tests:

CPUID detection
TPM 1.2 / 2.0 present and functional
Intel TXT / CBnT / AMD SKINIT / other vendor specific secure reset
solution
Presence of TXT / CBnT Authenticated Code Module (for Intel) or
SKL (for AMD)

Then we can check for D-RTM enablement:
PCR 17-22 population

D-RTM and HSI

22 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Authors of HSI Specification suggest: "To be trusted, this rating information
should be distributed in a centralized agnostic database such as the LVFS."

maybe it is worth to discuss other models?
fwupd/LVFS direction

it looks like fwupd/LFVS pursue BMC updates, which goes into
direction of full-blown OS update

HSI is limited to verification that can be done purely by software without
additional hardware, software or configuration change

maybe this is good generic guideline for platform security features
detectability

What HSI level D-RTM checks should be added?
What about modern OSF boot flow?

Discussion

23 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

Q&A

24 / 24
Linux Secure Launch - TrenchBoot Summit 2021

CC BY | Piotr Król

