How soon can we start a hypervisor? Consideration about
enabling hypervisor in open-source firmware

Krystian Hebel', Piotr Krél2, Michal Zygowski®, and Lukasz Weisto®

1 3mdeb Embedded Systems Consulting, Gdansk, Poland
krystian.hebel@3mdeb.com

2 3mdeb Embedded Systems Consulting, Gdansk, Poland

piotr.krol@3mdeb.com

3 3mdeb Embedded Systems Consulting, Gdansk, Poland
michal.zygowski@3mdeb.com

4 3mdeb Embedded Systems Consulting, Gdansk, Poland
lukasz.wcislo@3mdeb.com

Abstract

Until now SPI flash memories were not considered to be a storage for a hypervisor,
because they were relatively too small. We’ve embedded Bareflank-based hypervisor into
SPI flash to be launched directly from coreboot and load SeaBIOS, also embedded inside
SPI flash. For this purpose, we had to change architecture from 32-bit used by coreboot
to 64-bit used by a hypervisor, and then get back to 32-bit to load SeaBIOS as a payload.
This is a compact solution for multiple purposes using Virtual Machines that provides
separation, stability, and security. Fact, that the hypervisor is embedded in the SPI means,
that simple disk removal doesn’t affect it. In this paper, we will show how we’ve done it
and what are the possible extensions and usages of our concept.

1 Introduction

Our ultimate goal was to create firmware that can start multiple applications in isolated virtual
environments directly from SPI flash. To achieve that we used two open and flexible frameworks
Bareflank and coreboot combining it into solution.

The Bareflank Hypervisor [1] is an open-source hypervisor Software Development Kit (SDK),
led by Assured Information Security, Inc. (AIS), that provides a set of APIs needed to rapidly
prototype and create new hypervisors. To ease development, Bareflank is written in C/C++,
and includes support for C++ exceptions, JSON, the GSL and the C++ Standard Template
Library (STL).

coreboot [2] is an extended firmware developing framework that delivers a lightning fast
boot experience on modern computers and embedded systems. As an open-source project it
provides auditability and maximum control over the technology. In our solution coreboot brings
up the platform, and handles hypervisor as a payload.

2 Hypervisors

Hypervisors are divided into two types:
e type 1 - native or bare metal hypervisors
e type 2 - hosted hypervisors

The division has been presented on Figure 1.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

HYPER
VISOR

HARD
WARE

TYPE 1

native

TYPE 2

(bare metal) hosted

Figure 1: Hypervisor types [3].

Type 1 hypervisors run directly on hardware and are responsible for controlling the hardware
and managing the guest operating systems. Examples of modern type 1 equivalent hypervisors
are: Xen [4], Microsoft Hyper-V [5], VMware ESX/ESXi [6]. Bareflank-based hypervisors also
belong to this group.

Type 2 hypervisors run from a conventional operating system, thus they are called hosted.
The guest operating systems are just the processes of the host operating system. Example
implementations of type 2 hypervisors are: QEMU [7], Oracle VirtualBox [8], VMware Player
[9].

There are also other examples of virtualization software that can be categorized as both
types of hypervisors. They include Linux’s KVM (Kernel-based Virtual Machine) [10] and
FreeBSD’s bhyve [11], which, as kernel modules, can convert the OS they are running on into
a type 1 hypervisor. On the other hand Linux and FreeBSD are still operating systems which
host hypervisor software and have their own applications which compete for resources. In such
case they can also be called type 2 hypervisors.

There is also an informal division into type 0 hypervisors. The type 0 is an hardware
hypervisor implemented by firmware [12]. Typically those hypervisors have limited feature set
and each guest has a logical dedicated hardware.

3 Terminology

Modern processors have evolved to an extent that they can accelerate the operation of hy-
pervisors with the help of virtualization extensions embedded in the silicon. Virtualization
is the application of the layering principle through enforced modularity, whereby the exposed
virtual resource is identical to the underlying physical resource being virtualized [13].

A virtual machine (VM) is an abstraction of a complete compute environment through
the combined virtualization of the processor, memory, and I/O components of a computer.
In this document VM may sometimes be used to describe CPU mode in which virtual machine
operates, in contrast to privileged mode reserved for hypervisor.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

The hypervisor is a specialized piece of system software that manages and runs virtual
machines.

The virtual machine monitor (VMM) refers to the portion of the hypervisor that focuses
on the CPU and memory virtualization. Similarly to VM, we may use VMM to describe
privileged mode of operation.

The terminology presented above may not always be accurate or may have different meanings
in terms of other hypervisor implementations. It is quite common to see different definitions
across projects and specifications.

Virtual-machine extensions (VMX) is a hardware implementation of virtualization in newer
Intel processors. It is marketed under the name VT-x. Virtual machine control structure
(VMCS) is a VMX structure describing transitions between VM and VMM, it also holds virtual
CPU state. VMX and VMCS are described in detail in Intel 64 and TA-32 Architectures Software
Developer’s Manual Volume 3 [16].

4 Embedded Hypervisors

An embedded hypervisor is primarily designed for embedded systems and generally provides
the same functionality as a type 2 hypervisor but puts emphasis mostly on security and perfor-
mance. They are also less customizable at runtime and have their set of isolation and memory
rigidly hardcoded.

An embedded hypervisor is most often a type 1 hypervisor, which means it runs directly
on the host’s hardware to control the hardware and to manage guest operating systems. For
this reason, they are sometimes called bare metal. They are able to provide secure encapsu-
lation for any subsystem defined by the developer so that a compromised subsystem cannot
interfere with other subsystems. For example, an encryption subsystem needs to be strongly
shielded from attack to prevent leaking the information the encryption is supposed to protect.
As the embedded hypervisor can encapsulate a subsystem in a VM, it can then enforce required
security policies for communication to and from that subsystem.

Another reason why to use an embedded hypervisor is that a VM may be restarted without
platform initialization (unlike watchdog-generated reset), which can reduce time required for
recovering the system back to useful state (because no memory training, PCI bus scan etc. is
required). It is possible to restart only one VM without restarting all of them. This helps
with running broad spectrum of software with different stability requirements on one platform.
For example, media player can be stopped with almost no impact while even a short downtime
in safety-critical systems like smoke detection, collision avoidance system in automotive or
terrain awareness and warning system (TAWS) in aviation can result in lost of life. Thanks to
secure encapsulation they can run on the same hardware, without impacting each other.

The main purpose of developing the hypervisor in the embedded system firmware is to in-
crease security and reliability with restriction to load code entirely from SPI flash only. Such
systems may be used in safety and life-critical applications. Any kernel panic or sustain could
be lethal, so hypervisor is necessary to guard the operating system on a very low level.

5 Bareflank initialization flow

The Bareflank payload can be divided into two parts:

e The VMM code delivered as a C header file with bytecode as a result of Bareflank SDK
build.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

e bfdriver (Bareflank driver) - minimal C code providing necessary hypervisor hooks and
code for VMM launching.

VMM part is compiled separately, from Bareflank source code!. We prepared Bareflank
build environment in form of Docker container [18]. Instructions for building are available there
as well. Although instructions mention building for UEFI, the VMM part of hypervisor can be
used with our implementation for coreboot. File required for the next step is still available in
the same directory as UEFI application, but its name is vmm.h. It contains hypervisor in ELF
format, saved as table of bytes ready to be used by C programs. Original ELF file has size
of about 1.2 MB?, header file is over 6 times bigger due to its text format. This size gets back
to its previous value after compiling. A table of bytes is used instead of loading binary file
in order to be independent from system or firmware-specific APIs for loading files and accessing
media devices.

The second part, bfdriver, is compiled as a part of coreboot build process. It assumes that
vmm.h is located in any of the included paths. We also needed to include some header files
from Bareflank, for now they are copied into the coreboot tree directly. This makes Bareflank
version used to build VMM dependent on copied headers , but we plan to address this problem.

A simplified flow of Bareflank initialization is shown on Figure 2. It does not go into details
of specific platforms. Second row of VMM block contains actual uses of VMX instructions.
While that code is compiled as a VMM module, not all of it actually runs at VMM level.
Before vmzon CPU runs in non-VMX mode, code between vmzon and vmlaunch runs with
VMM privileges, and everything after that is a VM. Since vmlaunch VM exits may occur; this
fact is used to implement required post-launch initialization®. Note that a large part of the code
must be run on each core.

6 Solution

We've embedded Bareflank-based hypervisor into SPI flash to be launched by coreboot as
a payload. With the help of SeaBIOS [17] also embedded inside SPI flash we load the guest
operating systems. This is a compact payload for multiple purposes and in our solution it is
using virtual machines deployed with Bareflank-based hypervisor. We outline challenges related
to embedded hypervisor integration in open-source firmware and possible ways to overcome
those.

At some point Bareflank executable file must be started. For other platforms it uses ei-
ther standard C libraries with OS-specific API for type 2 or UEFI Boot Services for type 1
hypervisors. None of these are available in coreboot, so we had to devise another option.

We have integrated the Bareflank hypervisor with coreboot thanks to the libpayload, which
is a static library containing common and useful functions for coreboot payloads. Our hypervisor
builds result in a C header file with an array of hypervisor bytecode in ELF format. We take
the header file and load it as a normal program via bfdriver linked with libpayload. Structure
and transitions in and out of resulting payload is presented on Figure 3.

1Code in Bareflank changes frequently. Some time ago we decided to freeze on one version, right after
extended APIs were merged into main repository [14].

2This size depends on complexity of VMM, it was given for hypervisor built for integration tests, using
instructions provided with Docker container. VMM will usually be bigger for feature-rich hypervisors.

3Some initialization is required after the hypervisor has started. For example, any memory mapped resources
such as ACPI or VT-d need to be initialized using the VMM’s CR3, and not the hosts [15]. For type 1 hypervisors
they are usually the same, but Bareflank supports also type 2 hypervisors.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

bfdriver

Load Start Start
VMM VMM OSinaVM

on each core

VMM
¥

Add memory
descriptors (internal VMM init
memory management)

BF init
(noop by default)

Y ¢ \Z
vmes->launch())
vmx() vmcs->load() Performs vmlaunch
Performs vmxon Performs vmptrld after setting CPU
registers with...)
| I
host CPU state provided values
for main (host) VM for other VMs

Figure 2: High-level overview of generic Bareflank initialization flow.

The first issue that had to be solved was that both Bareflank and SeaBIOS need to be built,
and Bareflank becomes the main payload — the one that is loaded automatically by the last stage
of coreboot (ramstage). This was resolved with small changes to the coreboot build system and
won’t be described in detail. More important part of this issue was the size of SPI memory.
On the board we were working (MinnowBoard Turbot Quad-Core) that size is only 8 MB [19],
but only half of it is available for BIOS section by default (the rest is reserved for ME, GbE
and flash descriptor). Moreover, continuous free space is limited because BIOS section contains
code that must be put at specific offsets. It can barely fit hypervisor, which is around 3.5 MB
(uncompressed) before adding any custom handlers. We had to be careful and we left a little
place to strip it eventually to have a way out, if during further development it would turn out
that we have no space left. Payload compression is a must-have. Still, SPI contains SeaBIOS
as well.

The second problem was that SeaBIOS obtains memory map from coreboot tables, which
are not modified by memory allocation functions provided by libpayload. Payloads typically
have limited lifetime, so the memory used by them is considered to be free as soon as that pay-
load exits or starts another boot stage. As a result, SeaBIOS was free to write over the VMM

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

memory, and even though it can be blocked by hypervisor, reporting this memory range as re-
served is more elegant solution. It also makes it easier to deal with discrepancy between amount
of memory available to VM and physical memory.

| Bareflank payload |
I bfdriver I
coreboot I I
libpayload
bootblock Payload
-l-)' payload entry point l
romstage SeaBIOS
| || transition to/from 64-bit |
ramstage Load Start Start | GRUB
J || memory management VMM VMM payload T tianocore
CBFS helper functions T
[L on each core I | embedded OS
| payload loaders e l h
other...
Y Y
| VMM |
32-bit i > 64-bit i » 32-bit

Figure 3: Structure of Bareflank payload.

Next problem is that coreboot works with 32-bit, Bareflank with 64-bit (while this is not
a prerequisite for starting VMX, it is used in Bareflank because it simplifies its implementation),
and SeaBIOS again with 32-bit architecture. We have achieved that by extending a default
libpayload config for x86 32-bit architecture and fixing parts of code which were not ready for
working in 64-bit environment. Soon after the Bareflank is loaded we switch to 64-bit mode
and then execute our hypervisor, which in turn performs transition back to 32-bit mode before
starting final payload.

Every core needs to set up VMX mode separately for multiple reasons, main being that each
virtual CPU has its own state, which requires (at least) one VMCS per logical processor (which
is either one core or one thread in systems with Intel Hyper-Threading)?. Code for executing
code on all cores/threads is not part of libpayload, we had to implement our own, including
transition to 64-bit mode.

4 Apart from mentioned ability to save state of multiple vCPUs, multiple VMCSs can be used for asymmetric
systems, where each core can work with different VMMs. While asymmetry can be achieved in code, checking
for vCPU number on each exit would introduce unnecessary delays. Another reason is that each vCPU can
have its own set of instructions and events resulting in VM exit. This is useful if some VMs require more
access to physical hardware than others. The most permissive (and dangerous) option is to not start VMX
on all processors, so some of them would have full access to the system — including ability to check for presence
of other cores, so they must not be used by software running on unrestricted cores, as there would be no
hardware restrictions of any kind. This core could also access memory assigned to VMM and communicate with
all devices.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

As a last step, to launch target applications or operating systems we start a virtual machine®
which starts executing SeaBIOS as a bootloader and then loads an operating system. Instead
of a heavy operating system it also might be a lightweight real-time operating system (RTOS)
which may even fit into SPI flash entirely. The example architecture and execution model has
been shown on Figure 4.

coreboot CBFS
4 N
bootblock
romstage
ramstage
N ¢ J
4 N
Bareflank
payload
N . J
V * V mEm
VM1 VM2 VM3
arbitrary GRUB2/
SeaBIOS payload tianocore
\ 4 \ 4
OSH 0S2

Figure 4: Example Bareflank hypervisor architecture.

6.1 Memory reservation

In the proposed architecture hypervisor wrapped with libpayload is launched. The memory
allocation for the program is done by the libpayload’s malloc. In order to pass the information
to SeaBIOS launched in VM, we have marked the memory allocated for hypervisor as reserved.
As a result SeaBIOS will create memory tables that mark hypervisor code as reserved. In such
way the virtual machine knows which parts of RAM it should not access.

5Technically, the last part of Bareflank driver (see section 5) is executed in a VM already. This helps with
parts of initialization that need to be performed after VMX is started. While this is important for developers,
end users may safely assume that VM starts from entry point of payload.

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

Otherwise we would have to dynamically generate and update extended page tables (EPT)®
at runtime, as well as implement our own memory management functions for allocating pages
for virtual machines. Those functions would have to omit hypervisor memory and keep its own
track of memory already in use. As sum of available memory sizes reported to all concurrently
running VMs is usually larger than physical memory available in this case, some kind of swap
memory would be required. While this is possible, it would have impact on both hypervisor
size and runtime performance. It would be very hard, if not impossible, to use such approach
with RTOS.

6.2 Virtualization enabling

In order to use virtualization features our hypervisor had to have a bit of multiprocessing (MP)
code to be able to turn virtual machine extensions (VMX) on. The VMX has to be turned on
for each core separately before any virtual machine on that core starts. The vmxon instruction
serves the purpose.

One way to look at multi processor systems is that they are separate machines with shared
memory. For implementing MP support we used APIC interrupts and a trampoline code that
transits from 16-bit mode all the way towards 64-bit mode. Because it is used only once,
during startup, there is no need to run it on multiple cores simultaneously, so all APs are
started in turn.

6.3 Target virtual machines

In the Figure 4 we have presented example usages and target virtual machines that could
be used with Bareflank. One can simply launch another payload entirely from CBFS to be
running as virtual machine or run a payload/bootloader of the operating system. Examples
of such payloads or bootloaders are:

e SeaBIOS [17] - open-source legacy BIOS implementation for booting conventional OS
in legacy mode.

e GRUB [20] - Grand Unified Bootloader, a GNU project designed mainly to load he Linux
kernel with initial ramdisk and pass the kernel command line parameters.

e tianocore [21] - open-source minimal Unified Extensible Firmware Interface (UEFI) im-
plementation. Tianocore payload is a special coreboot payload built with EDK2 and
coreboot packages. Can be used to load UEFI aware operating systems.

Summary

Apparently, there is a way to fit a hypervisor into an SPI flash, yet this solution has weak
points. The biggest is the lack of memory. Our Bareflank hypervisor has very limited features,
it doesn’t handle multiprocessing like other hypervisors do. But it works. Similar concepts are
simultaneously developed in other use cases: automotive, security and military, whenever any
issue may be life or security critical.

6Extended page tables provide mapping from guest physical to host virtual address space. They also enable
two new classes of exit reasons: EPT misconfiguration (tables are not valid, might be used for swapping memory)
and EPT violation (VM tries to access memory that it is not supposed to, e.g. write to read-only memory,
executing code from page that is not marked as executable). This is described in detail in SDM [16].

8

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

There are many possible future improvements. Firstly, Bareflank build system could be in-
cluded in coreboot build system, so there would be no need for using both in turn. This would
also improve header dependency issues. Another option could be to include whole ELF file
in CBFS, instead of providing VMM part of hypervisor in the form of C include file. This way,
when only VMM part is changed (i.e. behaviour of virtualized instructions or events, not
the partitioning of resources) there is no need to rebuild whole coreboot image.

As for partitioning, it should be possible to provide some type of configuration possible after
build, e.g. by reading a configuration file from CBFS. Also memory maps for next payloads can
be reworked so reported total memory would be smaller, instead of marking a large part of it
as reserved. Amount of memory can also be read from MSRs, they should also be emulated
accordingly, but the exact details are dependent on CPU vendor and model.

Old code base (from beginning of 2019) was used. Developers of Bareflank have fixed bugs
and changed API since.

Bareflank supports only Intel VMX. Support for other technologies (e.g. AMD-V, also
named SVM) can provide additional value to this SDK. It seems that developers had this
in mind when they were designing infrastructure for this repository, as all of the VMX-specific
implementations are kept separate from generic ones.

There is no easy way to tell where bfdriver for coreboot should be located. It can be a part
of coreboot, in which way it would be better integrated with libpayload. On the other hand,
because of heavy use of Bareflank header files, it can be included in Bareflank repository. Best
place for this driver is yet to be decided.

Trademarks
AMD and AMD-V are trademarks of Advanced Micro Devices, Inc.

Intel is a registered trademark of Intel Corporation.

References
1] https://github.com/Bareflank /hypervisor
2] https://www.coreboot.org/

[
[
[3] https://en.wikipedia.org/wiki/Hypervisor#/media/File:Hyperviseur.png
[4] https://xenproject.org/

[

5] https://docs.microsoft.com/en-us/windows-server /virtualization /hyper-v/hyper-v-technology-
overview

6] https://www.vmware.com/products/esxi-and-esx.html

7] https://www.qemu.org/

8] https://www.virtualbox.org/

9] https://www.vmware.com/products/workstation-player.html

10] https://www.linux-kvm.org/page/Main_Page

11] http://bhyve.org/

12] https://zuhaib-shaikh.neocities.org/downloads/os/Lecture_Slide-Virtual_Machines_.pdf

13] Edouard Bugnion, Jason Nieh, Dan Tsafrir, Synthesis Lectures on Computer Architecture, Hard-
ware and Software Support for Virtualization, 2017

[14] https://github.com/Bareflank/hypervisor/commit/ba613e2c687f7042bac6886858cf6da3132a61d6

[15] https://github.com/Bareflank/hypervisor/blob/ba613e2c687{7042bac6886858cf6da3132a61d6/

bfvmm /src/hve/arch/intel x64 /exit_handler.cpp#L789

Consideration about enabling hypervisor in open source firmware Hebel,Krél,Zygowski,Wcislo

[16]

10

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-
volumes-3a-3b-3c-and-3d-system-programming-guide

https://www.coreboot.org/SeaBIOS

https://github.com/3mdeb/bareflank-docker
https://minnowboard.org/minnowboard-turbot /technical-specs
https://www.gnu.org/software/grub/

https://www.tianocore.org/

	Introduction
	Hypervisors
	Terminology
	Embedded Hypervisors
	Bareflank initialization flow
	Solution
	Memory reservation
	Virtualization enabling
	Target virtual machines

