
D-RTM on non-x86 architectures like
ARM and POWER9

TPM.dev 2021 Conference

Piotr Król

1 / 24

12yrs in business
6yrs in Open Source Firmware and
Trusted Computing integration
C-level positions in

OSF and OSHW promotor
interested in Trusted Computing
Conference speaker and organizer
TrenchBoot Steering Committee
Core Member

Piotr Król
3mdeb Founder

whoami

2 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

coreboot licensed service providers since 2016 and leadership participants
UEFI Adopters since 2018
Yocto Participants and Embedded Linux experts since 2019
Official consultants for Linux Foundation fwupd/LVFS project
IBM OpenPOWER Foundation members

Who we are ?

3 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

Krystian Hebel, Firmware Engineer @ 3mdeb, as main contributor to
POWER9 status
Stuart Yoder, System Architect @ ARM, for ARM section review

Kudos

4 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

What is D-RTM?
POWER9 boot process intro
D-RTM status in POWER9
Overview of D-RTM on POWER9

Triggering DRTM
SBE side of things
Back to Hostboot - MPIPL
Other quirks of current implementation
Summary

D-RTM status in ARM
Triggering D-RTM in ARM

Q&A

Agenda

5 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

DRTM start when Dynamic Launch event call executes
DL Event controls PCRs 17-22, those are initialized with value -1
DL Event change PCRs value to 0 and immediately extends with DCE hash
Any attempt to reset TPM will set PCR[17] to -1 (TPM reset attack
immunity)

TCG D-RTM Architecture v1.0.0

D-RTM

6 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

BMC SBE
(OTPROM)

SBE
 (PROM) Hostboot

OPALLinux

BMC (Board Management Controller)
SBE (Self-Boot Engine) - firmware and hardware (dedicated built-in small
CPU), which configures and starts main CPU
Hostboot - main CPU boot firmware (processor, bus and memory
initialization)
OPAL (OpenPOWER Abstraction Layer) - skiboot (runtime services) and
skiroot (Linux kernel and initramfs, essentially part of bootloader, but
included in OPAL image)

POWER9 boot process intro

7 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

There is only partial implementation of D-RTM support in OpenPOWER
firmware, because of that D-RTM is not fully functional
D-RTM on POWER9 is implemented in SBE and Hostboot firmware

this is different to x86 where special CPU instruction was
introduced for such purpose
TPM locality 4 is enabled by SBE, code running on host CPU doesn't
have the ability to do so. This is one of the requirements defined by
TCG.

SBE support was introduced in 2016, by following patches by Shakeeb
Pasha

MPIPL Start Chipops and Mpipl istep implementation
Continue MPIPL implemntation

Hostboot support was introduced in 2017, by following patches by Nick
Bofferdinig

Support DRTM RIT protection
Add TPM device driver support for DRTM PCR reset sequence

D-RTM status in POWER9

8 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

https://github.com/open-power/sbe/commit/87d632d8a957d0a2714b93a66650501e02e866a2
https://github.com/open-power/sbe/commit/046b54f611dacb3ddb45a9835ec490f8dee44bdd
https://github.com/open-power/hostboot/commit/a9eefaa1086c7a3cc51e374c52a7c04397968fd5
https://github.com/open-power/hostboot/commit/3dbcf1450853dc138e136b7db1f46e19f2e3ed3c

OS (Linux)

OpenPOWER Abstraction Layer (OPAL)

Self-Boot Engine (SBE) Hostboot MPIPL D-RTM Payload

Trigger D-RTM DCE Preamble

Dynamic Launch Event DCE DLME

Overview of D-RTM on POWER9

9 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

OS

OPAL

Set DRTM Payload Address in master

processor MboxScratch7 register

Set validDrtmPayloadAddr bit in

master processor MboxScratch8 register

Determine current processor

Late Launch Primary (LLP) bit

for active master processor

Late Launch Secondary (LLS) bit

for others

Set Late Launch (LL) bit

on all other processors

Set own LL bit

Above diagram show how hypothetical D-RTM trigger from OS through
OPAL could look like
Documentation and code miss D-RTM Payload format description
Setting LL cause SBE interrupt, which handles further processing

Triggering DRTM

10 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

Self-Boot Engine

Enter safe modeTurn off power managementForce stop code executions on all cores

should be already stopped,

but some event may have brought

core back online

Reset TPM Turn off other devices and clear their caches

Those are interrupt controller,

PCIe Host Bridge Nest Accelerator

and other. Wait until all of them are quiesced.

Clear L2 and L3 cacheWait until processors are quiescedReinitialize LPC access to PNOR (flash) and UART

Choose main core Power off all cores Stop clocks for cache and cores

After all those actions it seem all cores are prepared for waking interrupt
Most of the system is down - source of waking interrupt is unknown

SBE side of things

11 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

validateDrtmPayload()

Find D-RTM Payload

Enter TPM locality 4

Extend PCR17 with D-RTM Payload hash

Exit TPM locality 4

Turn off Local Quiesce Achieved bit

MPIPL (Memory Preserving Initial Program Loader) - part of OpenPOWER
firmware which executes special boot path skipping memory training, ECC
initial pattern writing and executes D-RTM Payload, if it was set.

Back to Hostboot - MPIPL

12 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

 // Extend (arbitrary) measurement to PCR17
 SHA512_t hash = {0};
 memcpy(hash,DRTM_RIT_PAYLOAD,sizeof(DRTM_RIT_PAYLOAD));
 pError = TRUSTEDBOOT::pcrExtend(TRUSTEDBOOT::PCR_DRTM_17,
 TRUSTEDBOOT::EV_COMPACT_HASH,
 hash,
 sizeof(SHA512_t),
 DRTM_RIT_LOG_TEXT,
 sizeof(DRTM_RIT_LOG_TEXT));

In existing implementation DRTM_RIT_PAYLOAD contains "DRTM" string
PCR17 is extended with "DRTM\0\0\0..." up to the size of SHA512, there is
no hash calculation
SHA1 and SHA256 banks are extended with above "payload" trimmed to
the side of appropriate hashes, so only first bytes are used for PCR
extending

Back to Hostboot - MPIPL

13 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

The best description of current status of DRTM on POWER9:

 #else

 // TODO: RTC 167205: Securely verify the measured launch environment
 // TODO: RTC 167205: Really measure+extend the payload

 #endif

Obviously existing implementation needs more work and looks more like
unti testing then ready to use code.

Back to Hostboot - MPIPL

14 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

Documentation says that SBE enables locality 4, but code doing so is
nowhere to be found. Maybe done by hardware?
Hostboot can only extend PCR17, every operation is hardcoded to use this
PCR. This may have been done to easy convert SRTM to DRTM by changing
code in one place instead of every operation separately, but it effectively
blocked possibility of extending PCR18-PCR22, which are also reserved for
DRTM.
TPM DRTM reset is normally done by writing to HASH_START, writing all
bytes of DCE one by one to HASH_DATA and finishing it with a write to
HASH_END (everything in locality 4). On write to HASH_END TPM sets
PCR17 to hash of bytes received through HASH_DATA (for all implemented
banks). Hostboot skips HASH_DATA part, so PCR17's initial value is
sha256sum /dev/null.
Hostboot code only supports Nuvoton 65x and 75x Models at this time, I2C only.
TPM header has also LPC, but LPC host controller doesn't expose TPM
specific cycle types - only IO, memory and firmware memory cycles are
available. Due to unavailability of those modules we were unable to test
anything in practice.

Other quirks of current implementation

15 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

Probably the only path that has any chance of success with minimal
modifications is:

Hostboot -> DRTM -> Hostboot MPIPL -> OPAL -> Linux.

Obviously calling D-RTM from Hostboot is just a unit test in current
code and probably the idea was to make it general mechnism that
we can call from OS after making it work from Hostboot

One of the reasons for using DRTM is lack of trust for firmware, but in this
case that same firmware is (mostly) re-run during DRTM anyway.

Hardware components seem to be in place, implementation in software
and user-level documentation is lacking.

POWER9 DRTM summary

16 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

ARM works on official D-RTM specification
publishing is planned in Fall 2021
TrenchBoot Steering Committee supported specification review
process and provided feedback based on our past experience with
Intel and AMD implementation
Unfortunately we are under NDA, so we cannot say more than you
can find searching Internet

There are some vendors, which seem to support D-RTM for quite long time
(2018?)

Qualcomm Snapdragon 850 seem to support System Guard Secure
launch
There are also some signs of NXP support in Project Mu

We can find that on Qualcomm DRTM TrustZone application is
implemented that supports SMC (Secure Monitor Call) memory protections

https://github.com/TrenchBoot/documentation/blob/master/steering-committee/Community-Meeting-June17-2021.md

D-RTM status in ARM

17 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

https://github.com/TrenchBoot/documentation/blob/master/steering-committee/Community-Meeting-June17-2021.md

Normal World

Rich OS

Application

Kernel

Secure World

Secure Monitor

Secure OSD-RTM ApplicationD-RTM Payload

Trigger D-RTM

DCE PreambleDispatcher

KernelDynamic Launch EventDCEDLME

Above diagram is based on interpretation of Microsoft description of
Qualcomm implementation and is only hypothetical

Triggering D-RTM in ARM

18 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

Q&A

19 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

We would like to thank NLNet Foundation for funding following projects

Fobnail - OSS and OSHW USB token for attesting Dynamically Launched
Measured Environments (DLME), granted for 3mdeb
lpnTPM - OSS and OSHW Trusted Platform Module, granted for LPN Plant

TCG TPM related projects

20 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

The Fobnail project aims to provide a reference architecture for building
offline integrity measurement servers on the USB device and clients
running in Dynamically Launched Measured Environments (DLME)

In short it would be attestation server on USB token capable of
attesting D-RTM payload
this is not new concept in principle, it was already announced by
Jonathan McCune (Flicker author) at HotSec07 with the name
iTurtle

Project website: https://fobnail.3mdeb.com

iTurtle: https://www.usenix.org/legacy/event/hotsec07/tech/full_papers/mccune/mccune_html/index.html

Fobnail

21 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

https://fobnail.3mdeb.com/
https://www.usenix.org/legacy/event/hotsec07/tech/full_papers/mccune/mccune_html/index.html

HW and SW selection is at early stage
We started development on Nordic nRF52840 development kit

we will consider use of recent version of Nitrokey tokens
future iterations will consider RISC-V FPGA implementation maybe
even from European Processor Initiative

Initial work around software stack would be based on Zephyr RTOS
we also consider Rust: TockOS and/or baremetal Trussed, or even
RISC-V phone Precursor microkernel Xous

We hope to create unified software stack on both Fobnail and DLME side

Fobnail - hw and sw stack

22 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

https://zephyrproject.org/
https://www.tockos.org/
https://github.com/trussed-dev
https://github.com/betrusted-io/xous-core

Problem statement:
there is lack of standardization around TPM modules pinout,
connector and geometry
TPM firmware is not delivered in trustworthy way (closed source)

lpnTPM will provide flexible OSHW design that can be adjusted to
customer needs as well as OSS implementation based on Microsoft
Reference Implementation

lpnTPM

23 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

https://github.com/microsoft/ms-tpm-20-ref

.center[

We plan to use Nucleo STML476RG as base for further development, it is
already supported by Microsoft reference implementation, although

lpnTPM - hw and sw stack

24 / 24
TPM.dev 2021 Conference

CC BY | Piotr Król

