
Pros and cons of various layer
management tools

Yocto Summit 2020

Tomasz Żyjewski

1 / 34

Introduction
Yocto layered model
Presentation goal
Description of example project
Layer management - git submodules
Layer management - repo
Layer management - combo-layer
Layer management - kas
Summary and conclusions

Agenda

2 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

 tomasz.zyjewski@3mdeb.com

Embedded Systems Engineer
over 1 year Embedded Linux / Yocto experience
aspiring Yocto contributor

/usr/bin/whoami

3 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

3mdeb is a firmware and embedded systems development company founded by Piotr Król and
headquartered in Gdańsk, Poland. We combine the collaborative creativity of the open-source

community with the reliable strength of an enterprise-grade solutions provider.

Company profile

4 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

The Yocto Project

Initiated in 2010 by the Linux Foundation
open source project used to develop custom Linux-based systems
one of the most popular, the others are Buildroot or OpenWrt

Starting with the Yocto Project

overwhelming at first
lot of tools, informations, assumptions, variables

Yocto layered model

5 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Starting a new project can be like

prepare description of requirements
transforming it into list of tools and packages
in case of Yocto, every package is delivered by corresponding recipe

At this moment we can decide to provide all required recipes from our main
repository or to search and reuse existing recipes from existing layers.

Yocto layered model

6 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

So what are the layers in the Yocto Project?

one of the many features
group related functionalities into separate bundles
can be added to any project at any time (but some layers have
dependencies)
reduces the complexity and redundancy of a project

From the files perspective, layers are some repositories which contains meta-
data like recipes or configuration files.

Layers can and should be used to logically break down information about our
build.

Yocto layered model

7 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

A good prepared layer is a layer that contains the smallest set of metadata.
This also means that the smallest project can consists of several layers.

Yocto layered model

8 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

The more complex project, the more layers we need to use

What should we do now? How to start?

Yocto layered model

9 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Fortunately, the Yocto layered model also allows to create user friendly tools for
managing layers. In this presentation I would like to present four such tools

use of git submodules
use of the Google repo tool
combo-layer script from poky
kas tool from Siemens repository

The main goal of this presentation

a list of advantages and disadvantages of given solutions
give a chance to get to know several solutions to choose the most
appropriate

Presentation goal

10 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

The best lesson is to practice, therefore

the four mentioned tools will be tested on a small project
the project will be large enough to show features of given solution

Short high-end description of the project

image for RPi0 with X server, allowing to run chromium browser

changes in local.conf to set machine, distro and some variables

Description of example project

11 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

used layers

meta-openembedded and poky - basic layers used in builds, each of
them contains smaller layers and we will use some of them (e.g.
meta-networking)
meta-swupdate - provide possibility to create files to update system
meta-webkit - some useful tools including benchmark test for
browser
meta-raspberrypi - RPi layer, provides, among others, machine
config for the used hardware
meta-presentation - custom layer that allows you to make changes
to existing recipes (e.g. dnsmasq) to be applied to the target image

the last task will be to patch one of the used layers

Description of example project

12 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Presentation goal summary

the key goal is to compare various of tools on the same project
listed project requirements cover most of the popular tasks that developer
need to face when preparing layers
order of tested tools is random, each of them will end with a pros and cons
of given solution
every custom configuration file or script needs to be placed in out custom
layer which is meta-presentation

Description of example project

13 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

git submodule - one of the git's internal tools
description from https://git-scm.com/

It often happens that while working on one project, you need to use another
project from within it. Perhaps it’s a library that a third party developed or
that you’re developing separately and using in multiple parent projects. A
common issue arises in these scenarios: you want to be able to treat the two
projects as separate yet still be able to use one from within the other.

Doesn't this description fit perfectly with what we deal with in YP with layers?

layers should be separated
it should be easy to use more than one layer at a time

Layer management - git submodules

14 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

https://git-scm.com/

we should add other layers as submodules to our custom layer

adding submodules (meta layers) is done via the command git submodule
<URL>, to add poky as submodule type

$ git submodule add https://git.yoctoproject.org/git/poky

after adding all of them, commit changes

$ git commit -s -m "add needed meta-layers as submodules"
[git_submodules 0615242e8318] add needed meta-layers as submodules
 6 files changed, 20 insertions (+)
 create mode 100644 .gitmodules
 create mode 160000 meta-openembedded
 create mode 160000 meta-raspberrypi
 create mode 160000 meta-swupdate
 create mode 160000 meta-webkit
 create mode 160000 poky

note special 160000 mode for files

Layer management - git submodules

15 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

by default, added submodules will be checked out on master
to set correct refspec, cd to any one of them, make git checkout and
commit changes

$ cd poky
$ git checkout 88c6be81a5fbed098999fbef5576c5e0bb90cc21
$ cd ..
$ git add .
$ git commit -s -m "set correct refspec"
[git_submodules ca0f9be2a11d] set correct refspec
 1 file changed, 1 insertions(+), 1 deletions(-)
$ git show
commit ca0f9be2a11d5d6de351dfef6b69884617041542 (HEAD -> git_submodules)
Author: Tomasz Żyjewski <tomasz.zyjewski@3mdeb.com>
Date: Mon Oct 26 09:36:21 2020 +0100

 set correct refspec

 Signed-off-by: Tomasz Żyjewski <tomasz.zyjewski@3mdeb.com>
diff --git a/poky b/poky
index 4e4a302e37ac..88c6be81a5fb 160000
--- a/poky
+++ b/poky
@@ -1 +1 @@
-Subproject commit 4e4a302e37ac06543e9983773cdb4caf7728330d
+Subproject commit 88c6be81a5fbed098999fbef5576c5e0bb90cc21

Layer management - git submodules

16 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

apply custom patch on one of the used layers (poky)
needs to be done manually, git submodules do not support any kind of
patching layers from local files

$ cp patches/0001-add-removed-classes.patch poky/
$ cd poky/
$ git apply 0001-add-removed-classes.patch
$ git st
HEAD detached at 88c6be81a5fb
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: meta/classes/image_types_wic.bbclass
 modified: scripts/lib/wic/plugins/imager/direct.py

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 meta/classes/bluetooth.bbclass
 meta/classes/gnome.bbclass

Layer management - git submodules

17 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

modification of bblayers.conf and local.conf files

git submodules does not allow to make those changes
automatically

to use custom configuration files we need to

run oe-init-build-env first to create build environment and copy
our custom configuration files OR
run oe-init-build-env with special TEMPLATECONF variable pointed
to our custom configuration files

either way, this needs to be done every time someone start working with
project, possibility to make errors

Layer management - git submodules

18 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Summary of git submodules

Pros

does not require additional dependencies, most developers use git, right?
easy to use

Cons

limited to downloading selected layers and revision settings
preparation of the environment requires manual work or some trickery
related to writing scripts

Layer management - git submodules

19 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

repo - tool built on top of Git
helps to manage many repositories, set correct revisions
repo command is a Python script, the easiest way to use it is to download
and add it to PATH variable

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 39134 100 39134 0 0 150k 0 --:--:-- --:--:-- --:--:-- 151k
$ chmod a+x ~/bin/repo
$ repo --help
usage: repo COMMAND [ARGS]

repo is not yet installed. Use "repo init" to install it here.

The most commonly used repo commands are:

 init Install repo in the current working directory
 help Display detailed help on a command

For access to the full online help, install repo ("repo init").

Layer management - repo

20 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

repo works with manifest files
our custom layer should contain default.xml file with list of needed meta
layers
it could look as follows

<?xml version="1.0" encoding="UTF-8"?>
<manifest>
 <default remote="poky" revision="default"/>

 <remote name="poky" fetch="git://git.yoctoproject.org" />
 <remote name="rpi" fetch="git://git.yoctoproject.org" />
 <remote name="pres" fetch="ssh://github.com/Tomasz" />

 <project name="poky"
 revision="88c6be81a5fbed098999fbef5576c5e0bb90cc21"
 remote="poky"/>
 <project name="meta-raspberrypi"
 revision="9d0935c9bb1309431e62b8f8341eb503653e5ff5"
 remote="rpi"/>
 <project name="meta-presentation"
 revision="6cb191164259ee179163bfccb13a1dbac3c136ba"
 remote="pres" />
</manifest>

ssh may be needed when fetching from private repositories

Layer management - repo

21 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

to initialize new project, create new directory and call repo init

$ mkdir yocto_project && cd yocto_project
$ repo init -u <URL> -b <branch>

after that run repo sync, all layers will be cloned and checked out to the
correct revision
custom patch again need to be applied manually
the same applies to modifying the configuration files, the only option
remains is to copy them from the custom layer or a special call to oe-init-
build-env

this can cause some errors and need to be done every time

Layer management - repo

22 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Summary of git submodules

Pros

has many built-in options that allow you to control what you want to clone,
set the revision etc.
is based on a manifest file downloaded from anywhere (it can be a custom
meta-layer), which briefly and accurately describes the elements (layers)
included in the project
popular solution, often used, which means that it is also well tested

Cons

requires some preparation before use, for example installing a script to
PATH
as with git submodules, modifying anything other than the list of layers in
the appropriate revision is impossible, requires writing additional scripts

Layer management - repo

23 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

combo-layer - command-line utility
creates one mega combo layer that is combination of several layers
script available from poky

$./combo-layer -h
Usage: combo-layer [options] action
Create and update a combination layer repository from multiple component repositories.

Action:
 init initialise the combo layer repo
 update [components] get patches from component repos and apply them to the combo repo
 pull [components] just pull component repos only
 splitpatch [commit] generate commit patch and split per component, default commit is HEAD
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -c CONFFILE, --conf=CONFFILE
 specify the config file (conf/combo-layer.conf is the
 default).
 -i, --interactive interactive mode, user can edit the patch list and
 patches
 -D, --debug output debug information
 -n, --no-pull skip pulling component repos during update
 --hard-reset instead of pull do fetch and hard-reset in component
 repos
 -H, --history import full history of components during init

Layer management - combo-layer

24 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

to use, add combo-layer script and combo-layer.conf file to custom layer
entry for each layer can looks as follow

[meta-webkit]
src_uri = https://github.com/Igalia/meta-webkit.git
local_repo_dir = /home/tzyjewski/yocto_project/sources/meta-webkit
dest_dir = meta-webkit
branch = master
last_revision = 7bba8b0f806b10912f5d427d19867d017fc3aa34
file_exclude = recipes-browser recipes-devtools recipes-extended recipes-flatpak recipes-graphics

mandatory variables
src_uri
local_repo_dir
last_revision

optional variables
branch
file_exclude
more...

Layer management - combo-layer

25 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

to prepare mega layer, copy repository with configuration file and run init

$./meta-presentation/scripts/combo-layer init -c meta-presentation/conf/combo-layer.conf

as mentioned earlier, combo-layer not only clone given layers, it adds them
to one repository, now we can commit all of them in one repo
no options to automatically apply local patches to cloned layers
combo-layer similar to the previous tools, limited to setting layers, unable
to customize local.conf or bblayers.conf

Layer management - combo-layer

26 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Summary of combo-layer

Pros

transparent configuration file for selecting layers and their contents
powerful in case of customizing used layers
self-contained repository

Cons

self-contained repository
reviews might be time consuming, if there are many changes in many
layers

Layer management - combo-layer

27 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

kas - provides an easy mechanism to setup bitbake based projects
set layers, create default settings, launch build environment, initiate
bitbake build process
download kas-docker script to PATH (need docker installed)

$ wget -O ~/bin/kas-docker https://raw.githubusercontent.com/siemens/kas/1.0/kas-docker
$ chmod +x ~/bin/kas-docker

kas-docker script

$ kas-docker
Usage: /home/tzyjewski/bin/kas-docker [OPTIONS] { build | shell } [KASOPTIONS] KASFILE
 /home/tzyjewski/bin/kas-docker [OPTIONS] clean
Positional arguments:
build Check out repositories and build target.
shell Run a shell in the build environment.
clean Clean build artifacts, keep downloads.
Optional arguments:
--isar Use kas-isar container to build Isar image.
--docker-args Additional arguments to pass to docker forrunning the build.
-v Print operations.
--ssh-dir Directory containing SSH configurations,
 avoid /home/tzyjewski/.ssh unless you fully trust the container.
--no-proxy-from-env Do not inherit proxy settings from environment.

Layer management - kas

28 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

kas-docker runs with kas configuration files, they describe used meta
layers and changes to the configuration files
entry for a given layer

meta-raspberrypi:
 url: https://git.yoctoproject.org/git/meta-raspberrypi
 refspec: 9d0935c9bb1309431e62b8f8341eb503653e5ff5

kas configuration files can be stored in custom layer, to start new project
we usually create new directory, clone custom layer and start kas-docker
with command

kas-docker build meta-presentation/kas.yml

all layers will be cloned and checked out inside yocto_project directory

Layer management - kas

29 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

generated bblayers.conf

$ cat build/conf/bblayers.conf
standard
POKY_BBLAYERS_CONF_VERSION = "2"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
LICENSE_FLAGS_WHITELIST = "commercial"
BBLAYERS ?= " \
/repo/ \
/work/meta-openembedded/meta-multimedia \
/work/meta-openembedded/meta-networking \
...

generated local.conf

local_conf_header:
standard: |
CONF_VERSION = "1"
PACKAGE_CLASSES = "package_rpm"
SDKMACHINE = "x86_64"
debug-tweaks: |
EXTRA_IMAGE_FEATURES = "debug-tweaks"
MACHINE ??= "raspberrypi0-wifi"
DISTRO ??= "pres-x11"

kas configuration files allows to create default build settings
it is possible via bblayers_conf_header: and local_conf_header: sections,
first will modify top of bblayers.conf file and the second local.conf file
BBLAYERS will be generated based of the layer entries from kas
configuration file
distro and machine can be set via distro and machine variables in kas file

Layer management - kas

30 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

kas configuration file also allows to patch cloned meta layers
responsible fragment of the configuration file

poky:
 url: https://git.yoctoproject.org/git/poky
 refspec: 88c6be81a5fbed098999fbef5576c5e0bb90cc21
 layers:
 meta:
 meta-poky:
 meta-yocto-bsp:
 patches:
 removed-classes:
 repo: meta-pres
 path: patches/0001-add-removed-classes.patch

Layer management - kas

31 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Summary of kas

Pros

allows a large customization of the build environment
supports bundling the build configuration with a layer
actually the only tool that properly prepares local.conf and bblayers.conf
files
prepares build environments

Cons

when using the kas-docker script, installation of the docker is required
there are problems with file ownership set to 1000, so sometimes the
image recipe needs to be cleaned and rebuilt

Layer management - kas

32 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

every tool was presented with pros and cons

which one to use? you decide!

... but first, check all of them!

personnaly?
kas

repo

git submodules

combo-layer

Summary and conclusions

33 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

Q&A

Thank you

34 / 34
Yocto Summit Conference 2020

CC BY | Tomasz Żyjewski

