GRUB mini-summit 2020

Michat Zygowski

X 3MIDEB

1./.21



=< 3MDEB Agenda

e Introduction

e Network boot - what for?
e Network boot in GRUB2
e Other implementations
e Performance issues

e Debugging

e Comparing with iPXE

e (Conclusions

e Otherissues

e Q&A



_—x 3MDEB Introduction

Michat Zygowski
Firmware Engineer

Braswell SoC, PC Engines and
Protectli maintainer in coreboot
interested in:
o advanced hardware and
firmware features

* @ facebook.com/miczyg1395 o coreboot
o security solutions

» ©_@miczyg
o @ _michal.zygowski@3mdeb.com

* @ linkedin.com/in/miczyg


https://twitter.com/_miczyg_
mailto:michal.zygowski@3mdeb.com
https://www.linkedin.com/in/miczyg
https://www.facebook.com/miczyg1395

< 3MDEB Network boot - what for?

Many times in daily work or even at home we may face
situation when we need system recovery.

How often it happens that we do not have a free storage
device at hand to burn a live image?

In such situation the network boot option may be a time-saver or even a life-
saver



= 3MDEB Network boot - what for?

* No free storage device at hand to burn an live image on OR

e All storage medias are filled with important data, moving the around
would consume much time

e The live/installer images still weigh a lot, downloading an ISO and then
burning it on a USB stick for example, take another couple of minutes of
our precious time

e Solution? Boot a kernel (and initrd) directly with your favorite bootloader
and save efforts of bothering with physical medias

e Potentially can create one-touch installation and provisioning of certain
systems



= 3MDEB Network boot in GRUB?

So how does it work in GRUB2?
Two main types of implementations of GRUB2:

1. i386-pc (for legacy boot mode)
2. EFI:i386 or x64

What is common?

* GRUB2 does not have any NIC drivers on its own
e GRUB2 relies on the interfaces provided by the firmware

What is different?



=< 3IMDEB Network boot in GRUB?

What is different?
GRUB2 for i386-pc:

e the most limited network boot implementation

e relies on the PXE/UNDI API to talk with NIC

e PXE/UNDI can be delivered only with a PXE environment

* GRUB2 must be launched by PXE in order to have network working!

GRUB2 for EFI;

e standardized by UEFI Simple Network Protocol

e available almost on every UEFI implementation nowadays

* requires the UEFI network stack and NIC to be enabled in the setup menu

e even though you enable the required options it is not guaranteed it will
work (buggy UEFI implementations)



=< 3MDEB Other implementations

e iPXE (https://ipxe.org/) - network boot dedicated project, flexible PXE
software for many architectures and software stacks

e proprietary PXE, e.g Intel drivers
(https://downloadcenter.intel.com/download/291372v=t)

e webboot for LinuxBoot (https://github.com/u-root/webboot) - written in
Go multipurpose network boot environment

e Etherboot/gPXE (http://etherboot.org/wiki/) - another PXE compliant
implementation and good replacement for proprietary PXE ROMs


https://ipxe.org/
https://downloadcenter.intel.com/download/29137?v=t
https://github.com/u-root/webboot
http://etherboot.org/wiki/

= 3MDEB Performance issues

definitely, there was a problem with tftp, but then | tried GRUB 2.04
using its tftp and http support. Performance of GRUB TFTP and HTTP
modules is terrible, | will get to address that with maintainer, maybe on
GRUB and 3mdeb minisummit 2020.

-- Piotr Krol, founder of 3mdeb

https://github.com/xcp-ng/host-installer/issues/18#issuecomment-605654088

Thank you Piotr. Now let's check this out...


https://github.com/xcp-ng/host-installer/issues/18#issuecomment-605654088

= 3MDEB Performance issues

Let's craft a simple standalone image of GRUB for EFI to get as close to Piotr's
environment as possible. Let's build a GRUB2:

./linguas.sh #optional

./bootstrap

./autogen.sh

./configure --prefix=$HOME/local --target=x86 64 --with-platform=efi

make && make install

SHOME /local/bin/grub-mkstandalone -o grubx64.efi -0 x86_64-efi)\
/boot/grub/grub.cfg=./grub.cfg

What | did here is a magic trick to create a fully featured standalone EFI binary
with an embedded config file. So | don't have to worry to type commands |
want...



= 3MDEB Performance issues

Quick look at my grub.cfg file:

serial --speed=115200 --word=8 --parity=no --stop=1 --unit=0
terminal_1input --append serial
terminal_output --append serial

set debug=efinet,loader,linux,http

echo "Installing modules"
insmod efinet

insmod http

insmod net

net_dhcp efinet®

echo "Loading Linux"

1inux (http,archive.ubuntu.com)/ubuntu/dists/focal-updates/(...)/amd64/1linux initrd=initrd.gz
echo "Loading initrd"

initrd (http,archive.ubuntu.com)/ubuntu/dists/focal-updates/(...)/amd64/initrd.gz

echo "Ready to boot"



= 3MDEB Performance issues

Let's summarize;

e Linux kernel 11MB
e initrd 49MB
e Total 60MB

https://asciinema.org/a/370064

e |nitial ramdisk is not even downloaded because of destination unreachable
error
e Downloading a 11 MB Linux kernel takes about 47 seconds (~234kB/s)

INTOTAL TIME REQUIRED: 4.25 minutes!!!


https://asciinema.org/a/370064

=< 3MDEB Debugging

There is certainly something wrong with it. After some debugging it occurred
that GRUB is not using full MTU in packet transmissions:
https://asciinema.org/a/369935

e initially when HTTP requests are sent full MTU is used

e when the download is starting the MTU usage oscillates around 50% or
lower

e when debug is enabled the packets are received each 20ms

e sometimes the MTU usage is higher and receive intervals are lower, it is
not consistent

e quick calculation: 1s/206ms*1500(MTU)*50%=37,5kB/s SO
60MB/37,5kBs=1600s=~26,5min

Let's calculate the packet receive frequency based on asciinema:
60MB/256s=234kB/s 1s/234kB*1500(MTU)*50%=3.2ms

Is this possible? Does it look reasonable?


https://asciinema.org/a/369935

=< 3MDEB Comparing with iPXE

Let's compare it with iPXE: https://asciinema.org/a/370071
It only takes 17 seconds to download 60MB... (3.53MB/s)
With debug:

e many various drivers even for EFI: SNP, SNPONLY, EFI_SNP, EFI NII, NII;
can't get hold of what is really used

e typically the iPXE uses either native driver or Nll(Network Interface
Identification Protocol)/UNDI

e jtoccurred that iPXE uses the native Intel NIC driver, | had to force it to use
SNP

e well I did not manage to compare it apple to apple (because SNP is broken
on the platform | have been testing, Intel NICs; although | had more luck
with Realtek's some time ago)


https://asciinema.org/a/370071

=< 3MDEB Comparing with iPXE

SNP netO could not set station address before initialising:\
Error 0x72?f594087 (http://ipxe.org/7f594087)
SNP netO retrying initialisation (retry 1)
(...)
SNP netO retrying initialisation (retry 9)
SNP netO could not set receive filters Oxif (have 0x00):\
Error 0x7f594082 (http://ipxe.org/7f594082)
SNP netO could not set receive filters 0x07 (have 0x00):\
Error Ox7f594082 (http: //ipxe.org/7f594082)
SNP netO st 2 type 1 hdr 14 pkt 1500 rxflt 0x15/0x1f nvram 512 acc 4 mcast 0/8
SNP netO hw 00:25:90:b9:e3:c2 addr 00:25:90:b9:e3:c2 beast ff:ff:ff:ff:ff:ff
SNP netO media not present



=< 3MDEB Comparing with iPXE

"let the buggy UEFI implementations be with you" because creating
something that just works is sometimes too difficult

ll lE'l'

o
- ~h
YES; HMMM
,’ HEE



—~ 3MDEB Comparing with iPXE

FOR_NET_CARDS:

receive_pakctes

card-=driver->open

Mo
f (received = 10 && _
stop_condition) > card->driver-»recv

ves received += 1,

Received anything? receive Ethernet
acket




<~ 3MDEB Comparing with iPXE

net_step -= net_poll for each netdev

PERMAMNENT_PROCESS
net_step

netdev_poll

netdev_rx_frozen?

Yes

netdev_rx_dequeue Process packets net_rx() success?

Diagnosis
netdev_rx_err()



=< 3IMDEB conclusions

e iPXE is superior in terms of network drivers and its performance (well
GRUB2 has other advantages and also other main tasks)

e GRUB has less than 10% of iPXE network performance (250kB/s vs
3.53MB/s)

e with a subtle changes the GRUB2 network stack could reach the iPXE level

1490

/* Maybe should be better have a fixed number of packets for each card
and just mark them as used and not used. */

It suggests there is some field for improvement.

e the APl and polling in iPXE seems to be better optimized software design
(facts speak for themselves) and the software overhead is lower than in
GRUB


https://git.savannah.gnu.org/cgit/grub.git/tree/grub-core/net/net.c

= 3MDEB Other issues

e Python3 HTTP server seems to crash when used as a source for boot
images and kernels with GRUB EFI. Credits to Piotr Krdl for this finding

e Haven't managed to find time to check/debug it, but it should be pretty
simple.



QA

21./.21



