Less-Insecure Network Edge Virtualization with Low Size, Weight and Power

Platform Security Summit 2019 (10/02/2019)

Piotr Król

🗦 ЗМОЕВ

About me

Piotr Król Founder & Embedded Systems Consultant

- open-source firmware
- platform security
- trusted computing

- 💟 @pietrushnic
- 💿 piotr.krol@3mdeb.com
- 🕞 linkedin.com/in/krolpiotr
- ① facebook.com/piotr.krol.756859

Agenda

- Problem statement, goals and motivation
- TPM 2.0 in open-source
- PC Engines hardware and firmware
- SRTM: coreboot and GRUB2
- DRTM: TrenchBoot
- PCRs and measurements
- OPNsense and NDVM performance
- Demo
- Where to go from here?

Problem statement

- Edge/Fog Computing and IoT Gateways hype will increase the amount of network appliance devices.
- Vulnerability in network appliance software may lead to malicious firmware modification, which can be undetected over the whole life cycle of the device.
- Toolbox for reestablishing trust in firmware is almost empty and not easy to use.

https://www.wired.com/2013/09/nsa-router-hacking/ https://i.pinimg.com/236x/8e/77/77/8e7777e3cd4759eeb20da17969881a48--fog-computing-techhumor.jpg

BADEB How we can build less-insecure system?

- Use virtualization to isolate system components
 - strong, hardware-supported isolation
- Implement narrow interfaces
 - devices disaggregation
- Open-source software stack
 - on every stage of platform operation
 - in each device controller
- Reproducible builds
- Modern hardware features
 - firmware storage security
 - secure launch (aka late launch or secure startup)
 - IOMMU
- Trusted Platform Module

How many solutions are shipped with those features working out-of-the-box?

How open those solutions are?

Goal

Create less-insecure virtual network appliance

Motivation

- Need for secure network appliance which measurements can be attested
- Creation TrenchBoot implementation for AMD platforms
- Build solid ecosystem for Edge Computing "era"
- Building foundation for secure remote updates

🔁 ЗМОЕВ

TPM status in open-source

- Trusted Platform Modules are plug-and-play modules
- TPM enables SRTM and DRTM fundamental for platform integrity
- TPM 1.2 are common and well supported, but new designs should use 2.0
- Recent advancement in open-source TPM 2.0 support
 - tpm2-software (TSS, PKCS#11, OpenSSL Engine) https://github.com/tpm2-software
 - TPM Genie mitigation in Linux kernel https://github.com/nccgroup/TPMGenie
 - FreeBSD Secure Boot support https://papers.freebsd.org/2019/bsdcan/stanekimproving_security_of_the_freebsd_boot_process/
- TPM 2.0 is mandatory for Edge Computing and IoT Gateways (AWS, Azure)

PC Engines apu2

- Made by open-minded Swiss company
- Frequently OEMed used as base for other products by other vendors

Platform Security Summit 2019 CC-BY-4.0 | Piotr Król

PC Engines apu2

- AMD Embedded G series GX-412TC, 1 GHz quad Jaguar core with 64 bit
- AES-NI
- SKINIT for DRTM
- 4GB DDR3-1333 DRAM with ECC
- SD, USB, mSATA, SATA
- 2x mPICe (one with SIM socket)
- 3 Gigabit Ethernet channels using Intel i210AT / i211AT NICs depending on the model
- 6-10W@12V DC
- Lot of buses (RS232, LPC, GPIO, I2C)

PC Engines open-source firmware

- There are already thousands of devices in the field
- Each can be leveraged as a less-insecure network appliance
- Reasonable community that cares about open-source firmware
- regular monthly firmware releases (for last 27 months)
- reproducible builds
- signed hashes provided
 - QubesOS-like key chain
 - 3mdeb master->3mdeb open-source firmware->PC Engines release key

coreboot (SRTM)

- SPI image is build using the coreboot build system
- SRTM (or rather S-CRTM) implemented based on vboot library
- coreboot measures all boot stages and payload (GRUB2)
- SPI image can be build using the following repository
 - <u>https://github.com/pcengines/coreboot/tree/pcengines_trenchboot</u>
 - Use config.pcengines_apu2.tb
- Features
 - measured boot
 - verified boot (booting unsigned code result triggers recovery mode)
 - firmware updates
 - signed SPI images

	Ŧ	U	^	until the next power-down, power-up cycle. ⁽¹⁾					
	1	1 1 X One Time Program ⁽²⁾ Status Register is permanently prot written to.		Status Register is permanently protected and can not be written to.					
Ň									
4	1. when SRP1, SRP0 = (1, 0), a power-down, power-up cycle will change SRP1, SRP0 to (0, 0) state. 2.								
Π	This feature is available upon special order. Please contact Winbond for details.								

- Required for SRTM implementation
- Default Winbond chip for PC Engines apu2 doesn't have that feature
- Adesto AT25SF641 which provide features w/o "special order"
- Flashrom A utility for identifying, reading, writing, verifying and erasing flash chips
- PC Engines fork of flashrom was extended to support Adesto chip and OTP feature
- <u>https://github.com/pcengines/flashrom</u>

TrenchBoot

- Open-source ecosystem-wide framework for launch integrity
- Main goal is to enable out-of-the-box support for TCG D-RTM in opensource ecosystem
- Currently targeting Intel and AMD implementation design is prepared to handle other solutions
- Note that the AMD TrenchBoot implementation is completely open-source. This is not possible with Intel.

coreboot, TrenchBoot, and hypervisor

Hardware platform

coreboot TCPA measurements

• Visible during coreboot boot

PCR-2	a16bc92eb28ae11c13ad6d9c2ad0632dc9909983f4b17663dbf388eb756ddf9c	SHA256	[FMAP:	COREBOOT	CBFS:	bootblock]
PCR-2	8035cc56c197087c79504d98bd7c5841a8c7886b8236ee14d862f191d95d8dad	SHA256	[FMAP:	COREBOOT	CBFS:	fallback/romstage]
PCR-0	62571891215b4efc1ceab744ce59dd0b66ea6f73 SHA1 [VBOOT: boot mode]					
PCR-1	a66c8c2cda246d332d0c2025b6266e1e23c89410051002f46bfad1c9265f43d0	SHA256	[VBOOT	GBB HWID)]	
PCR-2	957757f20415ecd1c6f7e5acbaaafc9ac4cc858ec2df1913958b1e0655daf45a	SHA256	[FMAP:	COREBOOT	CBFS:	fallback/ramstage]
PCR-2	6c1d20616d91442b61de89de6bf81f0ee8e929919c9284061e00d004de893994	SHA256	[FMAP:	COREBOOT	CBFS:	spd.bin]
PCR-3	585721d9e083591b90d1df05178d87124a73602d88c4ab8258793d8658ab5061	SHA256	[PSPDIF	2]		
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	1f58561c980dd7c6d3c3cb6a845894cf674dc754b9215b54b85057b25ed3c1ea	SHA256	[FMAP:	COREBOOT	CBFS:	AGESA]
PCR-2	5b6d4566a1b3157a6f437c320be95fe85eb371eab63fcd4520b0e763572f4683	SHA256	[FMAP:	COREBOOT	CBFS:	fallback/dsdt.aml]
PCR-2	6c1d20616d91442b61de89de6bf81f0ee8e929919c9284061e00d004de893994	SHA256	[FMAP:	COREBOOT	CBFS:	spd.bin]
PCR-2	19d059948d4188fca951dd7297defe02d68a221dd78a9188515c69904c82c8fd	SHA256	[FMAP:	COREBOOT	CBFS:	fallback/payload]

Measurement

• Obtained in Xen dom0

sha1	:	
0	:	1e745033ad915853b44c9439116f311dd85011c8
1	:	000000000000000000000000000000000000000
2	:	000000000000000000000000000000000000000
3	:	000000000000000000000000000000000000000
4	:	000000000000000000000000000000000000000
5	:	000000000000000000000000000000000000000
6	:	000000000000000000000000000000000000000
7	:	000000000000000000000000000000000000000
8	:	000000000000000000000000000000000000000
9	:	000000000000000000000000000000000000000
10	:	000000000000000000000000000000000000000
11	:	000000000000000000000000000000000000000
12	:	000000000000000000000000000000000000000
13	:	000000000000000000000000000000000000000
14	:	000000000000000000000000000000000000000
15	:	000000000000000000000000000000000000000
16	:	000000000000000000000000000000000000000
17	:	169a4fe87b0df8470670339ba78ba05ea6fb9489
18	:	3d9f3514b22efe39c15094110f109e9ab06d5daf
19	:	000000000000000000000000000000000000000
20	:	000000000000000000000000000000000000000
21	:	000000000000000000000000000000000000000
22	:	000000000000000000000000000000000000000
23	:	000000000000000000000000000000000000000

Measurement

• Obtained in Xen dom0

sha256 :

0	:	000000000000000000000000000000000000000
1	:	d965b906c85450d5aad254368b53f043480e811b590ce37a524331d2b9135368
2	:	6e6e3d56aa878cd7f8ae745104d589f299938cd4009c3c79ea9cad2701690b12
3	:	f80ac628144ea6ac2743d9a48715e8f1ecb7458925d1d2a1b9e4bf5011ae1f5b
4	:	000000000000000000000000000000000000000
5	:	000000000000000000000000000000000000000
6	:	000000000000000000000000000000000000000
7	:	000000000000000000000000000000000000000
8	:	000000000000000000000000000000000000000
9	:	000000000000000000000000000000000000000
10	:	000000000000000000000000000000000000000
11	:	000000000000000000000000000000000000000
12	:	000000000000000000000000000000000000000
13	:	000000000000000000000000000000000000000
14	:	000000000000000000000000000000000000000
15	:	000000000000000000000000000000000000000
16	:	000000000000000000000000000000000000000
17	:	0d7bc289be9cdfec68e69665de67bdbd92aaa860a8bf4db49803991600dba2a6
18	:	000000000000000000000000000000000000000
19	:	000000000000000000000000000000000000000
20	:	000000000000000000000000000000000000000
21	:	000000000000000000000000000000000000000
22	:	000000000000000000000000000000000000000
23	:	000000000000000000000000000000000000000

SHA-1

• **PCR0** - extended by vboot logic with boot mode (normal, dev, recovery, keyblock)

SHA-256

- **PCR1** extended by vboot logic and represent hardware ID
- **PCR2** used by coreboot to extend measurements of all loaded and/or executed components from CBFS'es, either read-only or read-write parts
- **PCR3** used by coreboot to extend measurements of variable and runtime data that might change across boots (MRC cache, CMOS configuration, etc.)
- PCR4-16 not used

DRT measurements

SHA-1

- **PCR17** extended by TrenchBoot Landing Zone code and measures LZ, Linux+u-root
- **PCR18** command line used for booting Linux+u-root

SHA-256

• PCR17 - extended natively by AMD SKINIT instruction

OPNsense

- pfSense fork since 2015
- BSD 2-Clause "Simplified" license
- different UI
- IPS/IDS based on Suricata included
- weekly security updates

Performance tests setup

Platform Security Summit 2019 <u>CC</u>-BY-4.0 | Piotr Król

Performance tests results

• VM1 client (VM to VM test)

(...)
[ID] Interval Transfer Bitrate Retr
[5] 0.00-120.00 sec 13.1 GBytes 940 Mbits/sec 575 sender
[5] 0.00-120.04 sec 13.1 GBytes 939 Mbits/sec receiver

• VM2 server (VM to VM test)

(.)					
-						
[ID]	Interval	Transfer	Bitrate	Retr	
[5]	0.00-120.00 sec	13.1 GBytes	940 Mbits/sec	575	sender
[5]	0.00-120.04 sec	13.1 GBytes	939 Mbits/sec		receiver

• VM3 client (VM to PC test)

()					
[ID] [5] [5]	Interval 0.00-120.00 sec 0.00-120.04 sec	Transfer 13.1 GBytes 13.1 GBytes	Bitrate 940 Mbits/sec 939 Mbits/sec	Retr 575	sender receiver

Demo time

Platform Security Summit 2019 <u>CC</u>-BY-4.0 | Piotr Król

🔁 ЗМОЕВ

What we can do with that?

- Security
 - reproducible builds of whole software stack
 - only firmware signed by trusted party can be used
 - possibility of reestablishing trust without reboot
 - remote attestation
- Multifunction network appliance with clean isolation
- Simplified configuration reproducibility and migration
- Multiple levels of management
 - direct connection with firewall VM for network management
 - orchestration through hypervisor
- With additional VMs sky is the limit (or rather hardware performance)
- All of that without losing trust in your network appliance
- And even if that will happen you detect and can reestablish it

Where to go from here?

- <u>https://trenchboot.github.io</u>
- <u>https://github.com/TrenchBoot</u>
- <u>https://groups.google.com/forum/#!forum/trenchboot-devel</u>

Marketing pitch

- 3mdeb is based in Gdańsk, Poland
- Over 4 years we worked with 50 customers from 21 countries

Example engagements

• Open-source firmware implementation and maintenance

• IoT Gateways and Edge/Fog Computing devices

Platform Security Summit 2019 CC-BY-4.0 | Piotr Król

Open-source hardware

• 3mdeb inside

• community projects manufactured by 3mdeb

Platform Security Summit 2019 CC-BY-4.0 | Piotr Król

Marketing pitch

- Examples engagements
 - From hardware bring-up to complete Board Support Package (BSP)
 - x86 firmware (BIOS/UEFI/coreboot) development, debugging and optimization
 - AWS and Microsoft IoT Cloud integration
 - firmware and embedded systems maintenance
- Desired partnership
 - hardware makers and OEMs
 - open-source firmware promoters
- Hiring
 - we always look for people motivated to open firmware ecosystem and promote open solutions on the edge
 - Interested? Please send CV
- If you looking for commercial support feel free to visit our website or contact us:
 - <u>https://3mdeb.com</u>
 - contact@3mdeb.com

Q&A

Platform Security Summit 2019 CC-BY-4.0 | Piotr Król

Backup

Platform Security Summit 2019 CC-BY-4.0 | Piotr Król

Hardware platforms limitations

- TPM2.0 over LPC
 - TPM Genie and sniffing issues
 - Patches to Linux kernel under review
- SPI header
 - anyone with recovery dongle and working firmware

coreboot future improvements

- C environment bootblock for apu2
 - we cannot use vboot before romstage
 - everything up to romstage has to be locked by RO flag
- Recovery mode
 - currently, there is not enough space
 - we deployed commercial solutions with SRTM, firmware A/B, and recovery mode
- TPM2.0 logs are stored in TCPA (TPM1.2 log)
 - TPM2 logs are different than TCPA logs, implement correct TPM2 log format and differentiate from TCPA log API
- minimize the read-only locked code by moving raminit code to read-write partitions
- save TPM2 measurements in TPM2 log area in a format compliant with TCG (coreboot)
- implement TrenchBoot support for the direct secure launch of Xen
- use SHA256 sums for all PCRs in TrenchBoot and coreboot

Start trusting Your BIOS SRTM with vboot, TPM and permanent flash protection, Michał Żygowski, OSFC 2019