
How to enable AMD IOMMU in
coreboot

OSFC 2018

Piotr Król

1 / 42

Introduction
Motivation
What is IOMMU and why we may need it?
AMD IOMMU features
ACPI tables brief explanation
Implementation state

Broken IVRS from AGESA
Initial patches
Current state and further work

Summary

Agenda

2 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

PC Engines platforms maintainer
interested in:

advanced hardware and
firmware features
security and updateability

 @pietrushnic
 piotr.krol@3mdeb.com
 linkedin.com/in/krolpiotr

 facebook.com/piotr.krol.756859

Piotr Król
Founder & Embedded Systems Consultant

Introduction

3 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

https://www.linkedin.com/in/krolpiotr
https://www.facebook.com/piotr.krol.756859

Fascination with security-focused OSes

- QubesOS - personal computing
- OpenXT - critical infrastructure
- ViryaOS - automotive

Customer requests

- isolation of user facing web from rest of the system
- separation of NICs for different purposes

Community work

- virtualized firewalls (pfSense, OPNSense, IPfire)
- Proxmox
- CoreOS
- KVM

Motivation

4 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

MMU
DMA
Virtualization
IOMMU

Short terminology intro

5 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

MMU (Memory Management Unit)
virtual memory management
memory protection
cache control
bus arbitration

MMU

6 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

System bus

CPU

DMA
controller

IO controller Main
memory

Address

Count

Control

1. Program DMA
controller

2. DMA request transfer
to memory 3. Data transfer

4. ACK

Interrupt when
finished

DMA (Direct Memory Access)
provide performance optimization for IO reads and writes

DMA

7 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

System

Hardware

Type 1 hypervisor (e.g. Xen)

Guest OS
(Linux) ...

System

Hardware

Host OS
 (Windows, Linux, ...)

Type 2 hypervisor (KVM)

...Guest OS
(Linux) Host OS

process

Virtualization

8 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

IOTLB is TLB for IO devices
TLB is cache of entries that matching virtual address to physical address
there 2 important things about TLB:

when match was found in TLB (hit) - we're good
when it was not found (miss) - things complicate little bit and
behavior may be platform depending

Wikipedia

IOTLB

9 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

I/O Memory Management Unit (IOMMU): MMU for I/O devices
most important features:

hardware enforced memory protection - security
virtual address translation for DMA - performance
interrupts remapping and virtualization - performance
page table sharing - e.g. graphics performance
PCI passthrough - security and performance

Device addresses Virtual addresses

Main Memory

Physical addresses

IOMMU MMU

CPUDevice

Wikipedia

IOMMU

10 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

Space allocated
for DMA

Arbitrary
memory region

DMA attack

11 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

Space allocated
for DMA

Arbitrary
memory region

DMA attack

12 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

Space allocated
for DMA

Arbitrary
memory region

DMA attack

13 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

Space allocated
for DMA

Arbitrary
memory region

DMA attack

14 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

Space allocated
for DMA

Arbitrary
memory region

DMA attack

15 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

4. DMA Setup

Space allocated
for DMA

Arbitrary
memory region

DMA attack

16 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

4. DMA Setup

5. DMA Request
/ACK

Space allocated
for DMA

Arbitrary
memory region

DMA attack

17 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

4. DMA Setup

5. DMA Request
/ACK

Space allocated
for DMA

Arbitrary
memory region

6. Physical
address

DMA attack

18 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

4. DMA Setup

5. DMA Request
/ACK

Space allocated
for DMA

Arbitrary
memory region

7. Physical
address

6. Physical
address

DMA attack

19 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Main Memory

Device CPU

MMU

1. Virtual address

2. Protection checks

3. Physical address

4. DMA Setup

5. DMA Request
/ACK

Space allocated
for DMA

Arbitrary
memory region

7. Physical
address 6. Physical

address

IOMMU

can be initiated by
malicious device
buggy device driver

hardware enforced memory protection mitigate DMA attacks - its one of
main functions of IOMMU

DMA attack

20 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

each guest need access to interrupt controller for IPI and device interrupts
high rate of device and interprocessor interrupts may cause significant
overhead
IOMMU accelerates delivery of virtual interrupts from I/O devices to virtual
processor
virtualized interrupts are delivered to VM without hypervisor intervention
CPU and IOMMU maintain interrupt state in Guest Virtual APIC table

Interrupt remapping and virtualization

21 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Virtual address translation for DMA - this is for guest operating systems
under hypervisor control, if guest OS want to perform DMA operation for
given device, this operation needs continuous supervision of hypervisor,
what cause big overhead (even 30%), having IOMMU gives ability to
program DMA operation once and make it work without performance
overhead

Page tables sharing - if 2 or more devices can use the same physical
memory, what essentially means both can use VA which translate to the
same PA, then it can simplify programming, IOMMU gives that ability

PCI passthrough - using mentioned features we can assign given hardware
(example NIC) to one VM and do not give access to that hardware to
anything else, that means PCI passthrough, performance of this device
should be not much different then real hardware

IOMMU features

22 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

AMD I/O Virtualization Technology (IOMMU) Specification

AMD IOMMU

23 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

All AMD IOMMU implementations support basic features
device virtual to physical address translation
interrupt remapping
access permission checking

Extended features are described through IOMMU Extended Feature
Register (EFRSup)

AMD I/O Virtualization Technology (IOMMU) Specification

AMD IOMMU features

24 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

AMD IOMMU spec mention 28 software-visible features
Base support: I/O Page Tables for Host Translations, Interrupt
Remapping
Capabilities header: EFRSup enable/disable, IotlbSup
enable/disable
EFRSup: all other features

not enough time to present all, but we will mention most interesting ones
SMI Filter

intercept unexpected SMIs
blocks or defers suspected SMI sources

Guest Page Table NX and Access Protection
works the same as usual protection but applied to I/O initiated by
device

Memory Address Routing and Control (MARC)
give device ability to bypass IOMMU for low-latency needs

AMD IOMMU extended features

25 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Disable IOMMU simply pass whole traffic
Enabled IOMMU intercepts traffic from downstream devices

perform permission checks
translate addresses on the request
send translated to system memory

IOMMU reads 3 tables to perform above functions
permission checks table
address translation table
interrupt remapping table

all tables are cached and it is software responsibility to invalidate cache
when configuration changes
IOMMU detects following events and log them in system memory

IOMMU event responses - all IOMMU responses are logged
I/O Page Faults - e.g. lack of permissions, page not present
Memory Access Errors - e.g. uncorrectable ECC errors

Basic operation

26 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

there is no way one system can utilize all features and options
it is recommended that:

IOMMU initialization is performed by firmware - system
software/hypervisor should face configured IOMMU
firmware should describe IOMMU in dedicated ACPI tables
firmware must preserve or restore IOMMU configuration across
power management state transition

IOMMU configuration should be performed as early as possible
ACPI tables creation have to be done after PCI enumeration

Implementation consideration

27 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

AMD ACPI tables

28 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

March 2016 -Initial work published by Kyösti Mälkki
relied on AGESA returned values
custom IVRS patching
single isolation domain
not stable across reboots

June 2016 - Independent implementation by Timothy Pearson from Raptor
Engineering

deeply nested and recursive code
quite a lot of hard coded values
IVHD Type 10 used

Both implementation had its own problems, but without above work we
would not be able to move forward, so thanks to initial authors
June 2018 - patches picked by 3mdeb

based on combined work - some values came from AGESA and
some came from hand-crafted ACPI tables
tested under Xen 4.8 and Debian with 4.14.y Dom0

Implementation history

29 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Code path

src/include/device/pci_ids.h
src/mainboard/pcengines/apu2/variants/apu{2,3,4,5}/devicetree.cb
src/northbridge/amd/pi/00730F01/Makefile.inc
src/northbridge/amd/pi/00730F01/iommu.c
src/northbridge/amd/pi/00730F01/northbridge.c
src/northbridge/amd/pi/agesawrapper.c
9 files changed, 326 insertions(+), 17 deletions(-)

IOMMU PCI ID
Enable IOMMU
Add IOMMU driver compilation
Basic IOMMU driver
Key changes (IVRS ACPI table)
Correct AGESA init

Implementation

30 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

static struct boot_state boot_states[] = {
 BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
 BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
 BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
 BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
 BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
 BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
 BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
 BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
 BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
 BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables), <- HERE
 BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
 BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
};

bs_write_tables - src/lib/hardwaremain.c
-> write_tables - src/lib/coreboot_table.c
-> arch_write_tables - src/arch/x86/tables.c
-> write_acpi_table - src/arch/x86/acpi.c
-> write_acpi_tables (aka agesa_write_acpi_tables)
 - src/northbridge/amd/pi/00730F01/northbridge.c

Call stack

31 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Broken IVRS from AGESA

32 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

install Xen or boot over PXE
setup selected device for PCI passthrough

modprobe xen-pciback
xl pci-assignable-add 02:00.0

after above operations device should not be visible from dom0
create Xen HVM guest config for installation purposes and perform OS
installation in VM
boot VM and verify lspci

How to test IOMMU on Xen?

33 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

How to test IOMMU on Xen?

34 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

name = "debian-9.5.0"
builder = "hvm"
vcpus = 2
memory = 2048
pci = ['02:00.0']
disk=['/root/debian-9.5.0-amd64-netinst.iso,,hdc,cdrom', '/dev/vg0/debian,,hdb,rw']
vnc=1
vnclisten='apu2_ip_addr'
boot='d'

Sample Xen config

35 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Xen 4.8
Debian stretch
Linux 4.14.59 - requires well-crafted kernel with all Xen requirements filled
pfSense HVM guest
iperf

Detailed configuration you can find in blog post "pfSense as HVM guest on PC
Engines apu2" on 3mdeb website.

Xen PCI passthrough

36 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Passthrough in VM

Server

(speedtest-venv) root@apu2:~# iperf -s -B 192.168.3.101
--
Server listening on TCP port 5001
Binding to local address 192.168.3.101
TCP window size: 85.3 KByte (default)
--
[4] local 192.168.3.101 port 5001 connected with 192.168.3.102 port 34004
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 1.10 GBytes 941 Mbits/sec

Xen PCI passthrough performance

37 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

DMA attack protection verification is not trivial

after consulting PCILeech maintainer we are in process of using
PCIeScreamer to exercise PC Engines and test it against DMA
attacks

Google fuzzed Intel VT-d to check if it correctly protect memory, but no
details about tools and methodology

maybe good idea for next talk

DMA attack

38 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

PCI pass through tested on Debian and pfSense
performance prove that feature works correctly
there were no longevity testing
sporadic hangs in Xen hypervisor

(XEN) CPU1: No irq handler for vector e7 (IRQ -2147483648)
(XEN) CPU2: No irq handler for vector e7 (IRQ -2147483648)

we are not sure what are the correct IOMMU setting - there are lot of them
and correct configuration should be enforced as soon as possible
there are still bugs that can cause problems

Current state

39 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

AMD I/O Virtualization Technology (IOMMU) Specification - 48882 Rev 3.00
December 2016
AMD64 Architecture Programmer’s Manual Volume 2: System
Programming - 24593 Rev 3.29 December 2017

References

40 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

binary blobs are bad and working around defects they may introduce is
time consuming

Future work

stabilize the code and merge mainline
enable and verify advanced IOMMU features
GPU passthrough (?)
prove that AMD IOMMU protects against DMA attacks
"towards reasonably secure" router/IoT gateway

Summary

41 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

Q&A

42 / 42
OSFC 2018

CC BY 4.0 | Piotr Król

