
Consideration about enabling
hypervisor in open-source firmware

OSFC 2019

Piotr Król

1 / 22

 @pietrushnic
 piotr.krol@3mdeb.com
 linkedin.com/in/krolpiotr
 facebook.com/piotr.krol.756859

open-source firmware
platform security
trusted computing

Piotr Król
Founder & Embedded Systems Consultant

About me

2 / 22
class/conference title

CC BY | author

https://www.linkedin.com/in/krolpiotr
https://www.facebook.com/piotr.krol.756859

Introduction
Terminology
Hypervisors
Bareflank
Hypervisor as coreboot payload
Demo
Issues and further work

Agenda

3 / 22
class/conference title

CC BY | author

Goal

create firmware that can start multiple application in isolated virtual
environments directly from SPI flash

Motivation

to improve virtualization and hypervisor-fu
to understand hardware capabilities and limitation in area of virtualization
to satisfy market demand

Introduction

4 / 22
class/conference title

CC BY | author

Virtualization is the application of the layering principle
through enforced modularity, whereby the exposed virtual
resource is identical to the underlying physical resource

being virtualized.

layering - single abstraction with well-defined namespace
enforced modularity - guarantee that client of the layer cannot bypass it
and access abstracted resources
examples: virtual memory, RAID

VM is an abstraction of complete compute environment

Hypervisor is a software that manages VMs

VMM is a portion of hypervisor that handle CPU and memory virtualization

Edouard Bugnion, Jason Nieh, Dan Tsafrir, Synthesis Lectures on Computer Architecture, Hard- ware and Software Support for Virtualization, 2017

Terminology

5 / 22
class/conference title

CC BY | author

Hypervisor

OSOSOS

OS OS OS

Hypervisor

OSOSOS

Hypervisor

OSOSOSOSOSOS

Hypervisor

Firmware

Hardware

Type 0 Type 1 Type 2

Firmware

Hardware

Firmware

Hardware

Type 2: VMware Player, Oracle VirtualBox, QEMU
Type 1.5(?): Linux KVM, FreeBSD bhyve
Type 1: Xen, Microsoft Hyper-V, VMware ESX/ESXi, Bareflank
Type 0: "corevisor", IBM LPARs(Logical PARtitions) and Oracle
LDOMs(Logical Domains), L4Re

Hypervisors

6 / 22
class/conference title

CC BY | author

relatively new to industry (early 2000s)
efficiency

typically small and fast
minimal impact on system

security
helps to minimize TCB (Trusted Computing Base)
easier certification and reliability testing
subsystem encapsulation

communication
implementation specific
typically: VMCALL, VMFUNC, CPUID, MSR, EPT manipulation for
bigger piece of data

isolation and real-time capabilities
minimal delay caused by software
performance close to hardware native capabilities

Embedded bare-metal hypervisor features

7 / 22
class/conference title

CC BY | author

Mission and safety critical applications
(Robotics/Automotive/Medical/Military)

strong isolation of non-critical and critical computation
isolation of fault detection components

Legacy code re-use
one VM for legacy code, other for new features
migration from uni-core to multi-core systems

Manageability
hypervisor may expose additional management layer even with
remote access
dynamic system updates

Embedded hypervisor applications

8 / 22
class/conference title

CC BY | author

Hypervisor in a firmware

9 / 22
class/conference title

CC BY | author

lightweight hypervisor SDK written in C++ with support for Windows, Linux,
UEFI and coreboot
Lead by Assured Information Security, Inc.
Supports Intel, but ARM and AMD are planned in future releases
Most important features:

Support logic (memory manager, serial, libc++)
Virtual CPU Management
Virtualization Extension Logic

After scaffolding new hypervisor most work is related to implement or
modify handlers

Bareflank hypervisor

10 / 22
class/conference title

CC BY | author

Project is quite quickly moving target
massive code changes can happen
it works without any further improvements so it is wise to stick to
one particular version during development
hypervisor in a firmware update needs reasonable justification

Instruction to build and test your first VM are straight forward
Community is very supportive with short response time
Building

modern C++ dependencies can be challenging
https://github.com/3mdeb/bareflank-docker
instructions for UEFI, but VMM can be used with coreboot
build process produces vmm.h

Bareflank getting started

11 / 22
class/conference title

CC BY | author

https://github.com/3mdeb/bareflank-docker

VMM - code delivered as a C header (vmm.h) file with bytecode as a result of
Bareflank SDK build

88k SLOC of bytecode (~1.2MiB), without any customization
bfdriver (Bareflank driver) - minimal C code providing necessary hypervisor
hooks and code for VMM launching delivered in 3mdeb coreboot fork as
payload

5.7k SLOC
~1k SLOC of libpayload modifications
~800 SLOC really written, rest are headers and common code from
Bareflank

user:coreboot git:(bareflank_payload) $ tree payloads/bareflank -L 1
payloads/bareflank
├── common.c // directly from Bareflank
├── entry.c // code to start VMM and payload
├── include // bunch of includes directly from Bareflank project
├── Kconfig
├── Makefile
└── platform.c // platform specific code for memory handling

Bareflank payload

12 / 22
class/conference title

CC BY | author

Bareflank initialization flow

13 / 22
class/conference title

CC BY | author

By default Bareflank uses
OS specific API if used as type-2 hypervisor
UEFI Boot Services if used as type-1 hypervisor

Libpayload for the rescue
x86_64 support added
x86_64 exception handling
x86_64 drivers may still need some fixes

Size problems
we need something that will start in VM (our choice was SeaBIOS)
continuous SPI space was required (310kB after LZMA
compression, 3.5MB uncompressed)

Hypervisor as coreboot payload

14 / 22
class/conference title

CC BY | author

SeaBIOS use coreboot tables provided memory map
libpayload doesn't modify memory map in coreboot tables
this result with SeaBIOS being able to overwrite VMM memory
coreboot was extended to reserve memory at compile-time

it also helps in limiting memory available to VMs

coreboot tables

15 / 22
class/conference title

CC BY | author

Bareflank requires 64-bit mode
coreboot works in 32-bit mode for now
SeaBIOS which we use as payload is in 32-bit mode
switching back and forth can be tricky, but we managed to implement that
flow
Meanwhile we found some problems in libpayload:

incorrect assumptions that sizeof(size_t) == sizeof(uint32_t) in
CBFS handling code: payloads/libpayload/arch/x86/rom_media.c
we changed order of entries in GDT since it didn't match coreboot
structure - looks like problem synchronizing coreboot and
libpayload

32 and 64-bit game

16 / 22
class/conference title

CC BY | author

each core have to setup VMX mode separately
this give flexibility in VM exit events handling
one VM may require more physical hardware access than other

not running VMX on all cores may cause security risk
code running on core without VMX is beyond control
core that has no VMX running can access VMM memory and
communicate with all devices

Libpayload to the rescue again
we implemented MP code that gives ability to execute on given
core/thread

VMX for each core

17 / 22
class/conference title

CC BY | author

based on information in coreboot tables SeaBIOS will create memory
tables marking hypervisor code as reserved
thanks to that VM knows which parts of RAM it should not access
can we avoid memory reservation in coreboot tables?

yes, by generating and updating EPT (Extended Page Table) at
runtime as well as implementing memory management functions
for VMs
that approach would have significant impact on hypervisor size and
performance
not suitable for embedded hypervisor applications

Memory reservation and EPT

18 / 22
class/conference title

CC BY | author

Hypervisor as coreboot payload

19 / 22
class/conference title

CC BY | author

Demo time

20 / 22
class/conference title

CC BY | author

include Bareflank build in coreboot
flexible partitioning is important, so some form of configuration should be
introduced
memory map management should be improved
we should update Bareflank code base (we base on early 2019 version)
AMD SVM support can provide additional value

Future improvements

21 / 22
class/conference title

CC BY | author

Q&A

22 / 22
class/conference title

CC BY | author

