Consideration about enabling
hypervisor in open-source firmware

OSFC 2019

Piotr Krol

X 3MDEB

1./22

= 3MDEB About me

Piotr Krol
Founder & Embedded Systems Consultant

e open-source firmware © @pietrushnic
* platform securiFy piotr.krol@3mdeb.com
* trusted computing linkedin.com/in/krolpiotr

() facebook.com/piotr.krol.756859

class/conference title

CCBY | author

https://www.linkedin.com/in/krolpiotr
https://www.facebook.com/piotr.krol.756859

=< 3MDEB Agenda

e Introduction

* Terminology

* Hypervisors

e Bareflank

e Hypervisor as coreboot payload
e Demo

e |ssues and further work

class/conference title

CCBY | author

= 3MDEB Introduction

Goal

create firmware that can start multiple application in isolated virtual
environments directly from SPI flash

Motivation
e to improve virtualization and hypervisor-fu

e to understand hardware capabilities and limitation in area of virtualization
e to satisfy market demand

class/conference title

CCBY | author

=< 3MDEB Terminology

Virtualization is the application of the layering principle
through enforced modularity, whereby the exposed virtual
resource is identical to the underlying physical resource
being virtualized.

* layering - single abstraction with well-defined namespace
e enforced modularity - guarantee that client of the layer cannot bypass it

and access abstracted resources
e examples: virtual memory, RAID

VM is an abstraction of complete compute environment
Hypervisor is a software that manages VMs

VMM is a portion of hypervisor that handle CPU and memory virtualization

Edouard Bugnion, Jason Nieh, Dan Tsafrir, Synthesis Lectures on Computer Architecture, Hard- ware and Software Support for Virtualization, 2017

class/conference title

CCBY | author

< 3MDEB Hypervisors

() @ 0os (O] 0os 0os (] 0os (O]

Hypervisor

Hypervisor

Firmware

Firmware

Firmware

Hardware

Hardware Hardware

Type O Type 1 Type 2

e Type 2: VMware Player, Oracle VirtualBox, QEMU

* Type 1.5(?): Linux KVM, FreeBSD bhyve

e Type 1: Xen, Microsoft Hyper-V, VMware ESX/ESXi, Bareflank

e Type 0: "corevisor", IBM LPARs(Logical PARtitions) and Oracle
LDOMs(Logical Domains), L4Re

class/conference title

CCBY | author

£ BMDEB Embedded bare-metal hypervisor features

e relatively new to industry (early 2000s)
o efficiency
o typically small and fast
o minimal impact on system
® security
o helps to minimize TCB (Trusted Computing Base)
o easier certification and reliability testing
o subsystem encapsulation
* communication
o implementation specific
o typically: VMCALL, VMFUNC, CPUID, MSR, EPT manipulation for
bigger piece of data
e jsolation and real-time capabilities
o minimal delay caused by software
o performance close to hardware native capabilities

class/conference title

CCBY | author

< 3MDEB Embedded hypervisor applications

e Mission and safety critical applications
(Robotics/Automotive/Medical/Military)
o strong isolation of non-critical and critical computation
o jsolation of fault detection components
e lLegacy code re-use
o one VM for legacy code, other for new features
o migration from uni-core to multi-core systems
e Manageability
o hypervisor may expose additional management layer even with
remote access
o dynamic system updates

class/conference title

CCBY | author

¥ 3IMDEB

Hypervisor in a firmware

coreboot CBFS
Ve ~
bootblock
romstage
ramstage
\ J
s ¢ ™
Bareflank
payload
_ . /
v v 4
VM1 VM2 VM3
arbitrary GRUB2/
SeaBlOS payload tianocore
\ 4 h 4
0St 0s2

class/conference title

CCBY | author

< 3MDEB Bareflank hypervisor

>

e lightweight hypervisor SDK written in C++ with support for Windows, Linux,
UEFI and coreboot
* Lead by Assured Information Security, Inc.
e Supports Intel, but ARM and AMD are planned in future releases
* Most important features:
o Support logic (memory manager, serial, libc++)
o Virtual CPU Management
o Virtualization Extension Logic
e After scaffolding new hypervisor most work is related to implement or
modify handlers

class/conference title

CCBY | author

=< 3MDEB Bareflank getting started

Project is quite quickly moving target
o massive code changes can happen
o it works without any further improvements so it is wise to stick to
one particular version during development
o hypervisor in a firmware update needs reasonable justification
Instruction to build and test your first VM are straight forward
e Community is very supportive with short response time
Building
o modern C++ dependencies can be challenging
o https://github.com/3mdeb/bareflank-docker
o instructions for UEFI, but VMM can be used with coreboot
o build process produces vmm.h

class/conference title

CCBY | author

https://github.com/3mdeb/bareflank-docker

< 3MDEB Bareflank payload

e VMM - code delivered as a C header (vmm. h) file with bytecode as a result of
Bareflank SDK build
o 88k SLOC of bytecode (~1.2MiB), without any customization
e Dbfdriver (Bareflank driver) - minimal C code providing necessary hypervisor
hooks and code for VMM launching delivered in 3mdeb coreboot fork as
payload
o 5.7k SLOC
o ~1k SLOC of libpayload modifications

o ~800 SLOC really written, rest are headers and common code from
Bareflank

user:coreboot git:(bareflank_payload) $ tree payloads/bareflank -L 1

payloads/bareflank

—— common.cC // directly from Bareflank

—— entry.c // code to start VMM and payload

—— 1include // bunch of includes directly from Bareflank project
—— Kconfig

—— Makefile

—— platform.c // platform specific code for memory handling

class/conference title

CCBY | author

=< 3IMDEB Bareflank initialization flow

bfdriver

Load Start Start
VMM VMM OSinaVM

on each core

VMM
4 v A
BF init des‘ggdtg:s ??r?lrgrn al ini
(noop by default) P VMM init
memory management)
: v F—
vmcs->launchy) N
vmx() vmes->load() Performs vmlaunch
Performs vmxon Performs vmptrld after setting CPU

registers with...
[’_[
host CPU state provided values
for main (host) VM for other VMs

J

class/conference title

CCBY | author

< 3MDEB Hypervisor as coreboot payload

e By default Bareflank uses
o OS specific API if used as type-2 hypervisor
o UEFI Boot Services if used as type-1 hypervisor
e Libpayload for the rescue
o x86_64 support added
o x86_64 exception handling
o x86_64 drivers may still need some fixes
e Size problems
o we need something that will start in VM (our choice was SeaBIOS)
o continuous SPI space was required (310kB after LZMA
compression, 3.5MB uncompressed)

class/conference title

CCBY | author

=< 3MDEB coreboot tables

1. Fill tables sz iRl 5. Get memory map

memory map

¥
»

3. malloc for WMM

1 2. Run payioad (libpayload 4. Run VM SeaBIOS e
coreboot J ‘;L Bareflank payload Wi

e SeaBIOS use coreboot tables provided memory map
e libpayload doesn't modify memory map in coreboot tables
e this result with SeaBIOS being able to overwrite VMM memory
e coreboot was extended to reserve memory at compile-time
o it also helps in limiting memory available to VMs

class/conference title

CCBY | author

=< 3MDEB 32 and 64-bit game

e Bareflank requires 64-bit mode
e coreboot works in 32-bit mode for now
e SeaBIOS which we use as payload is in 32-bit mode
e switching back and forth can be tricky, but we managed to implement that
flow
e Meanwhile we found some problems in libpayload:
o incorrect assumptions that sizeof(size_t) == sizeof(uint32_t) in
CBFS handling code: payloads/libpayload/arch/x86/rom_media.c
o we changed order of entries in GDT since it didn't match coreboot
structure - looks like problem synchronizing coreboot and
libpayload

class/conference title

CCBY | author

< 3MDEB VMX for each core

‘ +M:1§f}' E E +M:E§r}r E E +M:i§r}, E WIMM E:;de!data ‘
| VM1 | VM2 I E |
[VMM i VMM i i VMM |
{ Core 1 J { Core 2 J { Core 3 J { Core 4 J

e each core have to setup VMX mode separately
o this give flexibility in VM exit events handling
o one VM may require more physical hardware access than other
e not running VMX on all cores may cause security risk
o code running on core without VMX is beyond control
o core that has no VMX running can access VMM memory and
communicate with all devices
e Libpayload to the rescue again
o we implemented MP code that gives ability to execute on given
core/thread

class/conference title

CCBY | author

< 3MDEB Memory reservation and EPT

e based on information in coreboot tables SeaBIOS will create memory
tables marking hypervisor code as reserved

e thanks to that VM knows which parts of RAM it should not access

* can we avoid memory reservation in coreboot tables?

o yes, by generating and updating EPT (Extended Page Table) at
runtime as well as implementing memory management functions
for VMs

o that approach would have significant impact on hypervisor size and
performance

o not suitable for embedded hypervisor applications

class/conference title

CCBY | author

< 3MDEB Hypervisor as coreboot payload

l Bareflank payload |
I I
bfdriver
coreboot I I
libpayload
bootblock Payload
-I-)' payload entry point I
romstage SeaBIOS
| || transition to/from 64-bit |
ramstage Load \\ Start Start \ || | GRUB
J || memory management VMM VMM payload T tianocore
CBFS helper functions
| on each cors | | embedded OS
payload loaders —
l l other...
~lr v
i VMM |
32-bit I » 64-bit I » 32-bit

class/conference title

CCBY | author

¥ 3IMDEB

Demo time

class/conference title

CCBY | author

< 3MDEB Future improvements

* include Bareflank build in coreboot

* flexible partitioning is important, so some form of configuration should be
introduced

* memory map management should be improved

e we should update Bareflank code base (we base on early 2019 version)

e AMD SVM support can provide additional value

class/conference title

CCBY | author

¥ 3IMDEB

QA

class/conference title

CCBY | author

