
BITS and CHIPSEC as coreboot payloads

OSFC 2018

Piotr Król and Michał Żygowski

1 / 18

Introduction
Motivation
BITS features
CHIPSEC features
Enabling BITS as payload
Enabling CHIPSEC as payload
BITS and CHIPSEC in action (demo)
Summary

Agenda

2 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

Piotr Król Michał Żygowski
Founder & Embedded Systems

Consultant
Firmware Engineer

 michal.zygowski@3mdeb.com
linkedin.com/in/michał-żygowski-

88954416b

 @pietrushnic
 piotr.krol@3mdeb.com
 linkedin.com/in/krolpiotr

facebook.com/piotr.krol.756859

Introduction

3 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

https://www.linkedin.com/in/micha%C5%82-%C5%BCygowski-88954416b/
https://www.linkedin.com/in/krolpiotr
https://www.facebook.com/piotr.krol.756859

How we validate quality of our firmware?

Not enough validation in open source firmware
Firmware security is about validation and formal development process
BITS and CHIPSEC are recognized frameworks for quality checks
Linux UEFI Validation (LUV), what about coreboot?
Certification issues

Motivation

4 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

OS is external firmware customer
firmware is treated as part of hardware and should work out of the box
OS may introduce another point of failures

In following presentation we would like to present our achievements while using
BITS and CHIPSEC as validation payloads for MinnowBoard Turbot.

http://blog.qatestlab.com/wp-content/uploads/2011/02/validation.jpg

Why we should avoid running tests in OS?

5 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

http://blog.qatestlab.com/wp-content/uploads/2011/02/validation.jpg

system tables
ACPI
SMBIOS
MultiProcessor tables
$PIR (PCI Interrupt Routing) table
Runtime and Boot Services (Tianocore payload)
any other structure that firmware present to OS

hardware configuration
SPI protection
SMRAM protection

other
spectre mitigation presence
vendor specific features (USB DCI, ME, PSP)

What we should test?

6 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

BITS (BIOS Implementation Test Suite) consist of a GRUB2 bootloader
extended with runtime Python support.
Consist of Python scripts that validate:

ACPI
SMRR configuration
SMI latency
MP Table
MSRs

Typically it is run using bootable USB created using BITS ISO image
Can be run through GRUB menu entries or using batch mode
Results can be read directly on screen or saved to filesystem
Extensibility: Python interpreter in GRUB2

BITS intro

7 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

BITS is quite big in size 45MB - not suitable for SPI flash
was solved by utilizing only core (GRUB2+Python)

Environment is not user friendly - each modification requires SPI reflashing
network boot or using USB for development can solve that
live Python usage

Build system has real problems since it depends on obsolete libraries
we used Docker container for compilation

http://clipground.com/images/constraint-clipart-1.jpg

Constraints

8 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

http://clipground.com/images/constraint-clipart-1.jpg

checks SPI and firmware
protection
verifies integrity of flash descriptor
tests SMM, SMIs and SMM cache
poisoning
checks MSRs, SMRRs and memory
configuration
other various tools:

NMI sending
IOMMU check
TPM, EC utility
CMOS, PCI, SPD utility
etc.

CHIPSEC features

9 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

utilize GRUB from coreboot - already suitable for SPI flash
re-add couple functions required by BITS

grub_strcat

disable support for software floating point arithmetics using
compiler flags
small fixes to printf arguments parsing

port Python support for GRUB
adjust build system
hack BITS to correctly handle paths in SPI flash

isdir hack
enable serial output in toplevel config
LZMA compression

Enabling BITS as payload

10 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

add Python source code to BITS
resolve dependency from Python standard library

BITS has different needs than CHIPSEC
add missing Python standard libraries (xml, JSON, subprocess,
distutils...)

Implement BITS OS helper
Use some methods from BITS as backend for CHIPSEC calls

Enabling CHIPSEC as payload

11 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

Initial size of USB image - 45MB
Cutting off not needed pieces: 12.6MB

UEFI support
LZMA compression: 3.6MB

Solving size issue

12 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

FMAP REGION: COREBOOT
Name Offset Type Size Comp
cbfs master header 0x0 cbfs header 32 none
fallback/romstage 0x80 stage 31372 none
cpu_microcode_blob.bin 0x7b80 microcode 104448 none
fallback/ramstage 0x21400 stage 61533 none
config 0x304c0 raw 669 none
revision 0x307c0 raw 582 none
cmos_layout.bin 0x30a40 cmos_layout 1208 none
fallback/dsdt.aml 0x30f40 raw 12528 none
fallback/payload 0x34080 simple elf 3643338 none <--- HERE
(empty) 0x3ad8c0 null 74968 none
fsp.bin 0x3bfdc0 fsp 229376 none
(empty) 0x3f7e00 null 30936 none
bootblock 0x3ff700 bootblock 1720 none

BITS and CHIPSEC in CBFS

13 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

BITS and CHIPSEC in GRUB

14 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

BITS and CHIPSEC demo

15 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

[CHIPSEC] *************************** SUMMARY ***************************
[CHIPSEC] Time elapsed 2.762
[CHIPSEC] Modules total 17
[CHIPSEC] Modules failed to run 0:
[CHIPSEC] Modules passed 4:
[+] PASSED: chipsec.modules.common.spi_fdopss
[+] PASSED: chipsec.modules.common.bios_ts
[+] PASSED: chipsec.modules.common.bios_kbrd_buffer
[+] PASSED: chipsec.modules.common.smrr
[CHIPSEC] Modules information 0:
[CHIPSEC] Modules failed 5:
[-] FAILED: chipsec.modules.common.memlock
[-] FAILED: chipsec.modules.common.bios_wp
[-] FAILED: chipsec.modules.common.spi_access
[-] FAILED: chipsec.modules.common.spi_desc
[-] FAILED: chipsec.modules.common.spi_lock
[CHIPSEC] Modules with warnings 0:
[CHIPSEC] Modules not implemented 8:
[*] NOT IMPLEMENTED: chipsec.modules.common.ia32cfg
[*] NOT IMPLEMENTED: chipsec.modules.common.bios_smi
[*] NOT IMPLEMENTED: chipsec.modules.common.smm
[*] NOT IMPLEMENTED: chipsec.modules.common.rtclock
[*] NOT IMPLEMENTED: chipsec.modules.memconfig
[*] NOT IMPLEMENTED: chipsec.modules.remap
[*] NOT IMPLEMENTED: chipsec.modules.smm_dma
[*] NOT IMPLEMENTED: chipsec.modules.debugenabled
[CHIPSEC] Modules not applicable 0:
[CHIPSEC] ***

Results

16 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

Bare metal (Micro)Python support is important for firmware validation
There is not enough validation in firmware
We should utilize existing tools that were proved in industry

Further steps

Mainlining process
Consider BITS and CHIPSEC port to MicroPython
Fix platform bugs and misconfiguration

Summary

17 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

Q&A

18 / 18
OSFC 2018

CC BY 4.0 | Piotr Król and Michał Żygowski

